
Throttle Application Manual

1. Introduction
1.1 Overview
The Throttle application allows the user to implement a simple throttle control directly on the
emDrive. Input devices can be connected directly to the emDrive and mapped to the throttle
application. The application calculates the desired output based on these inputs and passes it to
motor control. The output can be used as either a torque input or a speed input in the motor
controller, depending on which CANOpen object the output is mapped to.

1.2 Features
The Throttle application supports the following features:

Disclaimer
Proprietary Information: This manual contains proprietary information belonging to
Emsiso d.o.o. The text and graphics included are for illustration and reference purposes only.
Specifications are subject to change without notice.
Scope of Application: The Throttle Application is designed for integration with emDrive
systems. Users should ensure compatibility with their specific hardware and software
configurations.
User Responsibility: Proper installation, configuration, and operation of the Throttle
Application require technical expertise. Users must adhere to all safety guidelines and
operational instructions provided in this manual.
Updates and Revisions: Emsiso d.o.o. reserves the right to modify the product and
manual without prior notice. Users are encouraged to consult the latest version of the
manual for up-to-date information.
Liability Disclaimer: Emsiso d.o.o. assumes no liability for damages resulting from the use
or misuse of the Throttle Application, including but not limited to personal injury, equipment
damage, or financial loss.

By using the Throttle Application, you acknowledge that you have read, understood,
and agreed to these terms and conditions

Throttle Module
Functionality: Calculates the desired output based on mapped input and configuration
parameters.
Capabilities: Can be configured as unidirectional or bidirectional.
Brake Module
Functionality: Calculates the desired brake torque based on mapped input and
configuration parameters.
Capabilities: Unidirectional only, with brake torque always in the opposite direction to
motor rotation.

If the desired output is speed, the brake should be disabled as this module is
intended to be used for torque control.

Pump Control Module
Functionality: Controls the pump, turning it on or off depending on motor and drive
temperature.
Precharge Module
Functionality: Manages the precharge process at startup.
DC-DC Turn on Delay Module
Functionality: Delays the activation of the DC-DC converter after startup to ensure
controlled power application.
SOC Monitoring Module
Functionality: Monitors the State of Charge (SOC) of the battery.
Capabilities: Reduces the maximum allowed torque when SOC is below a specified
threshold.

Requires an external Battery Management System (BMS) to operate correctly.

Charging Detection Module
Functionality: Detects when the battery is charging and disables the drive during the
charging process.
Input Mapping
Functionality: Allows certain inputs to the throttle application to be mapped to CAN
objects on the emDrive.

Table 1: Thr1_Enable CAN object
Object
Name

Object
Index

Object
Subindex

Description Unit

All throttle application features can be independently enabled or disabled (except the
brake module, which requires the throttle module to be enabled). This is done by
setting the Thr1_Enable CAN objects of the throttle application as detailed in Table 1.

Thr1_Gen__Enable 0x4010 0x01 Enables the throttle
application:
0 – disabled
1 – enabled (must be
enabled for any
modules to work)

/

Thr1_Enable__Throttl
e

0x4011 0x01 Enables the throttle
module:
0 – disabled
1 – enabled

Bit

Thr1_Enable__Brake 0x4011 0x02 Enables the brake
module:
0 – disabled
1 – enabled (throttle
must also be
enabled)

Bit

Thr1_Enable__Pump 0x4011 0x03 Enables the pump
control module:
0 – disabled
1 – enabled

Bit

Thr1_Enable__Precha
rge

0x4011 0x04 Enables the
precharge module:
0 – disabled
1 – enabled

Bit

Thr1_Enable__DC_DC 0x4011 0x05 Enables the DC-DC
turn on delay
module:
0 – disabled
1 – enabled

Bit

Thr1_Enable__SOC 0x4011 0x06 Enables the SOC
monitoring module:
0 – disabled
1 – enabled

Bit

Thr1_Enable__Chargi
ngDetect

0x4011 0x07 Enables the charging
detection module:
0 – disabled
1 – enabled

Bit

2. Input and Output mapping
Input and output mapping for the Throttle application is managed using the Thr1_Obj object, which
stores the CANOpen indexes and subindexes of the inputs and outputs mapped to the Throttle
application variables. You can remap any variable to a different input by writing the CANOpen

index and subindex of the new input to the corresponding Thr1_Obj sub-object.

The following table outlines the object mapping parameters for the Throttle application. Each
object in the table represents a specific function or control point within the application, and the
corresponding CANOpen index and subindex define where these objects are located in the
CANOpen network. By configuring these parameters, users can tailor the Throttle application to
their specific needs, ensuring precise control and monitoring of various functions.

By correctly configuring these object mappings, users can ensure that the Throttle application
communicates accurately with the various inputs and outputs connected to the emDrive. This
flexibility allows for precise control of throttle, brake, pump, and other critical functions, enhancing
the overall performance and reliability of the system.

Table 2: Object mapping parameters
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Obj__AppContro
l

0x4012 0x01 Address of CAN
object where
commands are
sent to application

Obj

Thr1_Obj__AppState 0x4012 0x02 Address of CAN
object where
application
state is saved

Obj

Thr1_Obj__ThrottleInp
ut

0x4012 0x03 Address of CAN
object with throttle
input

Obj

Thr1_Obj__ThrottleFW
D_DIvalue

0x4012 0x04 Address of CAN
object to forward
switch
input

Obj

Thr1_Obj__ThrottleRE
W_DIvalue

0x4012 0x05 Address of CAN
object to reverse
switch
input

Obj

Thr1_Obj__TargetObj 0x4012 0x06 Address of CAN
object where output
of throttle application
is written

Obj

Thr1_Obj__BatValid 0x4012 0x07 Address of CAN
object which stores
BMS
status.

Obj

Thr1_Obj__BatSOC 0x4012 0x08 Address of CAN
object which stores
battery
SOC in percentage

Obj

Thr1_Obj__BatState 0x4012 0x09 Address of CAN
object which stores
battery
state

Obj

Thr1_Obj__ChargingD
etectDIvalue

0x4012 0x0A Address of CAN
object which shows if
charging is detected.
If not 0 throttle
application considers
battery to be
charging.

Obj

Thr1_Obj__Pump1Ena
bleDO

0x4012 0x0B Address of CAN
object with main
pump
enable control -
active always when
power stage is
enabled

Obj

Thr1_Obj__Pump2Ena
bleDO

0x4012 0x0C Address of CAN
object with cooling
pump
enable control

Obj

Thr1_Obj__CoolingInp
utTemperature1

0x4012 0x0D Address of CAN
object with
temperature
input 1 (default
bridge heatsink
temp)

Obj

Thr1_Obj__CoolingInp
utTemperature2

0x4012 0x0E Address of CAN
object with
temperature
input 2 (default
motor temp)

Obj

Thr1_Obj__DCDCenab
leDO

0x4012 0x0F Address of CAN
object with DC-DC
enable
control

Obj

Thr1_Obj__BuzzerDO
1

0x4012 0x10 Address of CAN
object with buzzer
high side
enable control

Obj

Thr1_Obj__BuzzerDO
2

0x4012 0x11 Address of CAN
object with buzzer
low side
enable control

Obj

Thr1_Obj__BrakeInput 0x4012 0x12 Address of CAN
object with brake
input

Obj

Thr1_Obj__RPM_in 0x4012 0x13 Address of CAN
object with RPM data

Obj

Thr1_Obj__MainRelay
EnableDO

0x4012 0x14 Address of CAN
object with main
relay
enable control

Obj

Thr1_Obj__Precharge
RelayEnableDO

0x4012 0x15 Address of CAN
object with precharge
relay
enable control

Obj

Thr1_Obj__Precharge
DC_voltage

0x4012 0x16 Address of CAN
object with
measured
voltage during
precharge procedure

Obj

Thr1_Obj__Precharge
BatteryVoltage

0x4012 0x17 Precharge voltage
reported by battery.
Set to 0 if not
available/used. [obj]

Obj

2.1 Examples
2.1.1. Configuring an object to be used in the application
(e.g. for Thr1_Obj__ThrottleInput)

For example, to map the throttle voltage input to the emDrive analog input 1 (which has a
CANOpen object HW_AIN_AIN1 with index 0x3090 and subindex 0x01 as shown in the picture
below), you would write 0x309001 to Thr1_Obj__ThrottleVoltage .
To verify that the correct value has been written, check the HEX value indicated by the black circle
(black circle).

All mapping of object to the application are done in the same way. For relays (digital
outputs), switches (digital inputs), torque & velocity reference,... The main point is to show
that you need to combine index and subindex of the object you want to use in your throttle
application.

3. How to Use Each Module

3.1 Initial Setup Assumptions

Before using any module, the CANOpen object Thr1_Gen__Enable (index 0x4010 , subindex 0x01)
must be enabled by writing a value of 1.

0x4010 0x01 - Thr1_Gen__Enable = 1

3.2 Precharge Module
The Precharge module limits the charging current of the emDrive capacitors by activating the
precharge relay switch before the main relay switch is engaged. The precharge relay switch has a
resistor connected in series, which limits the current during the capacitor charging phase.

For readability and clarity, the following abbreviations are used:

The precharge relay switch refers to Thr1_Obj__PrechargeRelayEnableDO
The main relay switch refers to Thr1_Obj__MainRelayEnableDO

The sequence begins with the activation of the precharge relay switch. After the duration specified
by the Thr1_Precharge__PrechargeTime parameter (default is 2 seconds), the drive voltage is checked.
If the voltage does not exceed the threshold set by the Thr1_Precharge__MinDC_Voltage parameter, an
error state is reported. If the voltage is above this threshold, the main relay switch is activated.
Finally, after the time specified by the Thr1_Precharge__DelayBeforePrechargeOff parameter has
elapsed, the precharge relay switch is turned off, and the run state is set to true, activating the
throttle and brake functionality. Additionally, we have a diagram illustrating the above
functionality. It is assumed that after the precharge time, the DC voltage exceeds the set
threshold, thus no error state is encountered.

Image not found or type unknown

To set this module you have to set all of the objects in table 3 and also use the correct mapping for
Thr1_Obj__PrechargeRelayEnableDO and Thr1_Obj__MainRelayEnableDO .

Table 3: Precharge module parameters

It is assumed that the user has already calibrated the angle sensor, and that all other
emDrive parameters for the motor and regulation have been properly configured.

Note that the main and precharge relay switches are not integrated within the emDrive and
must be provided externally. For more details, refer to section 5.4 of the emDrive user
manual.

Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Precharge__Pre
chargeTime

0x4016 0x01 Time to wait after the
precharge relay
switch is activated
before checking the
voltage

s

Thr1_Precharge__Del
ayBeforePrechargeOf
f

0x4016 0x02 Time to wait before
precharge relay
switch
is deactivated after
the main relay
switch
has been activated

s

Thr1_Precharge__Min
DC_Voltage

0x4016 0x03 Minimum voltage
that must be present
on
drive capacitors in
order to not enter
error
state

V

Thr1_Precharge__Allo
wedVoltageDifferenc
e

0x4016 0x04 In case battery
voltage is provided,
this is maximum
difference allowed
between battery
voltage and DC link
voltage after
precharge time to not
trigger precharge
error

V

You can also verify whether the precharge completed successfully or if an error occurred using the
precharged module signals.

Table 4: Precharge module signals
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Precharge__Run 0x4016 0x05 Set to 1 when
precharge is
successfully finished

bit

Thr1_Precharge__Err 0x4016 0x06 Set to 1 if there was
an error during
precharge

bit

The module also allows configuration of the precharge module to compare the DC link voltage
measured on the inverter with the actual voltage of the battery. It will turn on the main relay only
when the voltage difference is less than the threshold specified by
Thr1_Precharge__AllowedVoltageDifference (this needs to happen before the
Thr1_Precharge__PrechargeTime). An example of this configuration can be found under "Precharge
Example 2".

Image not found or type unknown

3.2.1 Examples
- Precharge example 1
Description:
In this example, we will use the precharge module. For this, we need two relays: the main relay and
the precharge relay. We also need to determine the voltage threshold for activating the main relay
and the correct timings, which are described in Section 3.2.

Relay Connections
Main Relay: Connected to HW_LS1 (Index: 0x30A0, Subindex: 0x02)
Precharge Relay: Connected to HW_LS2 (Index: 0x30A1, Subindex: 0x02)
Voltage Measurement
The voltage will be measured using the inverter, which is the standard method (0x3101 0x07 Udc).

Timings
Precharge Time: 2 seconds
Time After Precharge Relay Turns Off: 0.5 seconds
Voltage Threshold
The voltage threshold for activating the main relay is 24V.

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen__Enable = 1

2. Enable the Precharge Module:

Enable the Precharge Module by setting the corresponding flag in the throttle

general object 0x4011 Thr1_Enable__Precharge to 1.

0x4011 0x04 Precharge = 1

3. Map Objects to the Application:

Choose the proper digital outputs to control the main relay and precharge relay:

e.g:
As per description we have the main relay connected to HW_LS1 and the precharge
relay connected to HW_LS2. The object indexes are as follows:

HW_LS1 = 0x30A0 0x02
HW_LS2 = 0x30A1 0x02

We set the following:

0x4012 0x14 MainRelayEnableDO = 0x30A002
0x4012 0x15 PrechargeRelayEnableDO = 0x30A102

It is recommended to use the default voltage measurement (0x3101 0x07 Udc), unless
a different object mapping is required

0x4012 0x16 PrechargeDC_Voltage = 0x310107

2. Configure the Precharge Module:

Set the precharge time:

0x4016 0x01 PrechargeTime = 2

Set the time after the precharge relay is turned off:

0x4016 0x02 DelayBeforePrechargeOff = 0.5

Set the minimum voltage that must be present:

0x4016 0x03 MinDC_Voltage = 24

3. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Precharge example 2
Description:
In this example, we will use the precharge module, to enable the min relay when the difference
between the DC - link on the inverter and the battery voltage is less than the threshold set in
Thr1_Precharge__AllowedVoltageDifference

For this example, you need to first finish the Precharge example 1 and then continue with the
following steps.

First you need to use the PDOs to get the value of the battery and map it to one of the 0x3020 -
General_Purpose objects.
In this example the voltage value of the battery is sent to 0x3020 0x09 - General_Purpose__gen1_32bit .

First you need to map the object where the value of the battery is stored:

0x4012 0x17 - PrechargeBatteryVoltage = 0x302009

Next you need to set allowed difference between DC-link that is measured on the inverter and the
voltage of the battery.
Lets assume that the allowable voltage difference is 10V.

0x4016 0x04 - AllowedVoltageDifference = 10V

If the actual voltage difference is more than 0x4016 0x04 - AllowedVoltageDifference = 10V , after the
period specified in Thr1_Precharge__PrechargeTime an error is raised.

3.3 Throttle module

The throttle module is responsible for calculating the desired output value based on the given input
voltage. It provides features such as short to ground and short to power supply detection, reading
forward and reverse switches, rate-limiting the output, and disabling the throttle when the brake is
active. Below is a detailed guide on the state diagram and parameter settings for the throttle
module.

Table 5: Throttle module parameters

Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Throttle__ZeroV
alue

0x4013 0x01 At this input value
output is zero.

V

Thr1_Throttle__ZeroD
eadBand

0x4013 0x02 Defines how large
zero dead band is

V

Thr1_Throttle__Enabl
eDeadBand

0x4013 0x03 Defines how large
enable dead band is.
Should be less or
equal to
Thr1_Throttle__ZeroD
eadBand value.

V

Thr1_Throttle__MaxIn
put

0x4013 0x04 At this input value
output is at
maximum
value defined in
Thr1_Throttle__OutFu
llPositive

V

Thr1_Throttle__MinIn
put

0x4013 0x05 At this input value
output is at
minimum
value defined in
Thr1_Throttle__OutFu
llNegative

V

Thr1_Throttle__NonV
alidMax

0x4013 0x06 Any input value
greater than this will
put
throttle module into
error state

V

Thr1_Throttle__NonV
alidMin

0x4013 0x07 Any input value
lesser than this will
put
throttle module into
error state

V

Thr1_Throttle__Progr
essive

0x4013 0x08 Determines how the
output changes
in relationship to the
input between zero
value and max value

/

Thr1_Throttle__Invert 0x4013 0x09 Inverts output Bit

Thr1_Throttle__RateLi
mit

0x4013 0x0A Limits how fast
output can change.

1/s

Thr1_Throttle__OutFu
llPositive

0x4013 0x0B Output when input
reaches max input
defined in
Thr1_Throttle__MaxIn
put

/

Thr1_Throttle__OutFu
llNegative

0x4013 0x0C Output when input
reaches min input
defined in
Thr1_Throttle__MinIn
put

/

Thr1_Throttle__OutSt
artPositive

0x4013 0x0D Starting output value
when throttle is no
longer 0, for positive
throttle values

/

Thr1_Throttle__Disabl
eAtBrake

0x4013 0x0E If set to 1, the
throttle command is
disabled (ramped
down to 0) when the
brake is activated;
otherwise, the brake
demand is subtracted
from the throttle
demand

Bit

Thr1_Throttle__WaitB
eforeBridgeDisable

0x4013 0x0F Time to wait after
throttle is disabled
before bridge is
disabled

s

Thr1_Throttle__WaitA
fterStart

0x4013 0x10 How long to wait
after startup before
operational state is
entered

s

Thr1_Throttle__IsNeg
ativeBrake

0x4013 0x11 If set to 1, negative
throttle will be
treated as brake

/

Thr1_Throttle__OutSt
artNegative

0x4013 0x1A Starting output value
when throttle is no
longer 0, for negative
throttle values

/

Thr1_Throttle__SkipIn
itWaitForSpeedDrop

0x4013 0x1B If set to 1, wait for
speed drop will be
skipped during
initialization

Bit

Table 6: Throttle module signals
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Throttle__Input 0x4013 0x12 Input from throttle /

Thr1_Throttle__OutNo
rm

0x4013 0x13 Normalized throttle
output (-1 full
negative, 1 full
positive)

/

Thr1_Throttle__Out 0x4013 0x14 Throttle output in
system units

/

Thr1_Throttle__Total
Out

0x4013 0x15 Sum of throttle and
brake in system units

/

Thr1_Throttle__Enabl
ed

0x4013 0x16 If throttle is out of
centre position for
EnableDeadBand -
power stage enabled

Bit

Thr1_Throttle__State 0x4013 0x17 State of throttle state
machine:
None(0), Start(1), Wa
itForNeutral(2), Idle(3
), Driving(4),Error(5),
Charging(6),
WaitForSpeedDrop(7)
,
WaitForSpeedDropCh
argingError(8),
ErrorEntry(9),
WaitForSpeedDropIni
t(10)

/

Thr1_Throttle__Err 0x4013 0x18 If throttle input is
outside NonValidMax
or NonValidMin

Bit

Thr1_Throttle__ErrCo
de

0x4013 0x19 Flag bits for different
errors.
0x01 -> throttle,
0x02 -> precharge,
0x04 -> App/drive
low level, 0x08 ->
brake

/

3.3.1 State Diagram

The state diagram for the throttle module consists of several states and transitions, ensuring the
correct operation and safety of the system.

image.pngImage not found or type unknown

Startup State
Buzzer Activation: Upon system start, the buzzer is activated if an external buzzer is
connected.
Wait Time: The system waits for the duration specified by the parameter
Thr1_Throttle__WaitAfterStart to complete the startup.
Error Check: If an error is detected during startup, the system transitions directly to the
Error State.

Operational State
Buzzer Deactivation: The buzzer is disabled upon entering the operational state.
RPM Check: The system waits for the RPM to drop to 0, if it is not already there.
Bridge Disable: The bridge is disabled, and the system waits for the throttle to be set to
zero.

Idle State
Idle Mode: The system enters the Idle State, waiting for the input to move out of the zero
position.

Driving State
Throttle Enabled: If the input moves out of the zero position and the throttle is enabled,
the system transitions to the Driving State.
Bridge Enable: The bridge is enabled, and the output is forwarded to motor control.

WaitForNeutral State
Throttle Disabled: If the throttle is disabled and the output moves out of the zero
position, the system returns to the WaitForNeutral State.

WaitForSpeedDrop State

http://help.emsiso.com/uploads/images/gallery/2024-06/gCIimage.png

Output Set to 0: When the throttle is disabled during the Driving State (either due to
Thr1_Enable__Throttle being set to 0, input within the disable dead band, or outside
allowed values), the system enters the WaitForSpeedDrop State.
RPM Check: The output is set to 0, but the bridge remains enabled until the RPM drops
below the value specified by Thr1_Brake__Full_RPM.
Wait Time: The system waits for the time configured in
Thr1_Throttle__WaitBeforeBridgeDisable.
State Transition: The state changes to Idle or WaitForNeutral based on whether the
input is at zero or not.

Charging State
RPM Drop: If charging is detected during the operational state, the system waits for the
RPM to drop.
Bridge Disable: The system moves to the Charging State, where the bridge is disabled.
Return to Operational: When charging is no longer detected, the system returns to the
operational state.

Error State
Error Detection: If an error is detected in any state, the system transitions to the Error
State.
Bridge Disable: The bridge is disabled, and the buzzer is activated.
RPM Check: In case of an error during the operational state, the system waits for the
RPM to drop before disabling the bridge.
Priority to Error State: If both charging and an error are detected simultaneously, the
system prioritizes transitioning to the Error State.
System Reset: There is no automatic recovery from the Error State; the system must be
manually reset.

3.3.2 Input to Output Transformation
The input to output transformation converts the input voltage of the analog input to output torque,
which is forwarded to motor control if the throttle is enabled. The basic transformation is illustrated
in the graph below.

Image not found or type unknown

Thr1_Throttle__ZeroValue: Defines the zero point of the input.
Thr1_Throttle__ZeroDeadBand: Defines the dead band around the zero point. While
the input voltage is within this dead band, the output remains zero.
Thr1_Throttle__MinInput: Minimum valid input voltage.
Thr1_Throttle__MaxInput: Maximum valid input voltage.
Thr1_Throttle__OutFullPositive: Maximum positive output torque.
Thr1_Throttle__OutFullNegative: Maximum negative output torque.
Thr1_Throttle__NonValidMin: Minimum input voltage considered valid.
Thr1_Throttle__NonValidMax: Maximum input voltage considered valid.

The transformation includes the following regions:

Zero Dead Band:
Defined by Thr1_Throttle__ZeroValue and Thr1_Throttle__ZeroDeadBand .
Output remains zero when input voltage is within the dead band.

Positive Throttle Region:
From the end of the dead band to Thr1_Throttle__MaxInput , the output rises in the
positive direction from 0 to Thr1_Throttle__OutFullPositive .
Output is calculated as y=xa​ , where y is the normalized output (0 at 0 and 1 at
Thr1_Throttle__OutFullPositive), x is the normalized input (0 at the edge of the dead
band and 1 at Thr1_Throttle__MaxInput), and a is the parameter
Thr1_Throttle__Progressive , which ranges between 0.3 and 3. The default value for a is
1, indicating a linear growth of output torque.

Negative Throttle Region:
From the end of the dead band to Thr1_Throttle__MinInput , the output falls in the
negative direction.
Output is calculated as y=−∣x∣a

Constant Max Throttle Region:
Between Thr1_Throttle__MaxInput and Thr1_Throttle__NonValidMax , the output remains at
maximum positive torque.
Between Thr1_Throttle__MinInput and Thr1_Throttle__NonValidMin , the output remains at
maximum negative torque.
If the input value increases beyond Thr1_Throttle__NonValidMax or decreases beyond
Thr1_Throttle__NonValidMin , the output torque is set to 0 and the throttle module enters
the error state.

This transformation ensures that the throttle application accurately converts the input voltage into
the appropriate output for motor control, with safeguards in place to handle invalid input values
and prevent unintended behaviour.

3.3.2.1 Progressive
The following chart illustrates how the throttle output changes based on different values of the
Thr1_Throttle__Progressive parameter. This parameter modifies the response curve of the throttle,

allowing for either a more gradual or more aggressive acceleration profile.

Black Curve: Represents a linear throttle response where Thr1_Throttle__Progressive is set
to 1. In this case, the output increases proportionally to the input.
Red Curve: Shows a concave transformation where Thr1_Throttle__Progressive is set to a
value between 0.3 and 1. This setting results in a more responsive output at low throttle
inputs, making the vehicle more reactive to small changes in input.
Blue Curve: Represents a convex transformation where Thr1_Throttle__Progressive is set to
a value between 1 and 3. This setting provides a smoother and less sensitive response at
lower inputs, allowing for finer control before reaching full throttle.

Understanding the Impact of Progressive Values

When Thr1_Throttle__Progressive < 1, the initial throttle response is stronger, and the output
rises quickly at lower input values.
When Thr1_Throttle__Progressive = 1, the response remains linear.
When Thr1_Throttle__Progressive > 1, the output starts increasing more gradually, providing
finer control in the lower range.

By adjusting this parameter, the response can be fine-tuned so that the throttle behaviour matches
specific application needs.

3.3.3 Other throttle module functions

Enable dead band
Enable Dead Band functions similarly to Zero Dead Band. However, instead of setting the throttle
output to 0, it disables the driver bridge when the input is less than a specified distance from the
zero point. This distance is determined by the Enable Dead Band threshold. To disable Enable Dead
Band, set its value to 0.

Disable at brake
When the parameter 0x4013 0x0E DissableAtBrake is set to 1, the throttle module output is set to zero
whenever the brake is active. This means that as soon as the brake is applied, the emDrive system
will start braking immediately, regardless of the throttle input.

When the parameter 0x4013 0x0E DissableAtBrake is set to 0, the throttle and brake outputs are
combined before being sent to motor control. In this case, the emDrive system will only start
braking if the brake output is greater than the throttle output.

Rate limit
The rate limit controls how quickly the output can change in response to changes in the input
(Higher the number, faster the change). This is determined by the parameter 0x4013 0x0A RateLimit .

When the input changes from 0 to 1 (works on normed value), the output will change from 0 to 1 in
1 / RateLimit seconds.

Output of throttle at zero value
If the application needs a specific output (not zero) to be set at zero position of a potentiometer
0x4013 0x01 ZeroValue , the object 0x4013 0x0D OutStartPositive can be set to achieve this functionality.
This will be presented in Throttle example 4.
With this feature the 0x4013 - Thr1_Throttle__EnableDeadBand , should be disabled

Image not found or type unknown

3.3.4 Examples

Ensure this threshold is always smaller than the Zero Dead Band threshold to prevent
unusual behaviour.

- Throttle example 1
Description:
Monodirectional throttle using only one analog input.

In this example, we will use a potentiometer as our throttle input. Our goal is to control the motor
in velocity mode, ranging from 0 to 100 RPM.

Throttle Input Details
Potentiometer: Used as the throttle input. Connected to AIN3 = 0x3090 0x03
Voltage and RPM Control
Error Condition: If the voltage from the potentiometer is lower than 0.2V or higher than 4.8V, an
error will occur (indicating a possible short or broken connection).
0 RPM: At 0.5V, the motor should run at 0 RPM.
100 RPM: At 4.5V, the motor should run at the maximum speed of 100 RPM.

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen__Enable = 1

2. Enable the Throttle Module:

Use the throttle general object 0x4011 Thr1_Enable to enable the proper module.

0x4011 0x01 Throttle = 1

3. Map Objects to the Application:

Choose the reference value to control (velocity or torque) and map analog/digital
inputs and outputs.

To control velocity:

0x4012 0x06 TargetObj = 0x301005

To control torque:

0x4012 0x06 TargetObj = 0x301004

Set the control mode (0 for torque, 1 for velocity):

0x3100 0x01 ControlMode = 0 or 1

Define the analog throttle input (potentiometer on AIN3):

0x4012 0x03 ThrottleInput = 0x309003

4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 0.5
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 0.5
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef or VelocityRef:
In this example we will use max = 100rpm and min = 0rpm

0x4013 0x0B OutFullPositive = 100
0x4013 0x0C OutFullNegative = 0

5. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Throttle example 2
Description:

In this example, we will use the same potentiometer as in Throttle Example 1. The main difference
is that this setup allows for bidirectional control of the throttle. Here’s how it works:

At 2.5V, the motor will be at 0 RPM.
At 4.5V, the motor will run at 100 RPM.
At 0.5V, the motor will run at -100 RPM (in reverse).

This setup enables you to control the motor speed and direction using a single analog input.

Objects to set:

1. Same as example "Throttle example 1"
2. Same as example "Throttle example 1"
3. Same as example "Throttle example 1"
4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 2.5
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 0.5
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef or VelocityRef:
In this example we will use max = 100rpm and min = -100rpm

0x4013 0x0B OutFullPositive = 100
0x4013 0x0C OutFullNegative = -100

Additionaly we have to set IsNegativeBrake

0x4013 0x11 IsNegativeBrake = 0

5. Same as example "Throttle example 1"

- Throttle example 3
Description:
In this example, we will use the same potentiometer as in Throttle Example 1, along with two
additional digital inputs to control the motor's direction.

Digital input 1 = 0x30B0 0x01 DIN1 - enable/disable positive throttle
Digital input 2 = 0x30B0 0x02 DIN2 - enable/disable negative throttle.

Objects to set:

1. Same as example "Throttle example 1"
2. Same as example "Throttle example 1"
3. Same as example "Throttle example 1"
4. Same as example "Throttle example 1"

Additionally, we only need to map digital input objects for enabling forward/reverse
throttle.

e.g.
We will use object 0x30B0 0x01 - DIN1 to enable/disable positive throttle.
We will use object 0x30B0 0x02 - DIN2 to enable/disable negative throttle.

So we need to set:

0x4012 0x04 ThrottleFWD_Dlvalue = 0x30b001
0x4012 0x05 ThrottleREW_Dlvalue = 0x30b002

If DIN1 and DIN2 are the same value, the throttle will not work. Only one of them can
be 1 and the other 0.

Additionaly we have to set IsNegativeBrake

0x4013 0x11 IsNegativeBrake = 0

Currently the inverter does not support using only one physical input (e.g
switch) to change direction. There must be two of them!

5. Same as example "Throttle example 1"

- Throttle example 4
Description:
In this example, we will need a working "Throttle example 1", the main difference will be that at
0.5V we want 100RPM and then we want to ramp up do the max value of 200 RPM.
We also want to have an ignition switch (enable switch). Which will be connected to 0x30B0 0x01 -
DIN1

We need to set the OutFullPositive = MAX desired RPM
We need to set the OutStartPositive = Standby RPMs

0x4013 0x0B - OutFullPositive = 100
0x4013 0x0D - OutStartPositive = 100

Setting the switch:

With these settings you can try the application, where you will see that you can never
disable the motor. If you go to the min position of the potentiometer the motor will spin with
100 RPM.

Currently there is a workaround to have an ignition switch which will be changed in the future
official release.
To get the ignition switch working we need to map the 0x30B0 0x01 - DIN1 to ThrottleFWD_Dlvalue

0x4012 0x04 - ThrottleFWD_Dlvalue = 0x30B001
0x4012 0x05 - ThrottleREW_Dlvalue = 0x302001 This is the workaround we map the 0x3020 0x01 -

gen1_8bit to the throttle application. This value shall be always at default = 0.

- Throttle example 5
Description:
Monodirectional throttle that uses a single analog input and provides gradual braking when the
throttle is released.

In this example, a potentiometer is used as the throttle input. The goal is to control the motor in
torque mode, with a torque range from 0 to 10 Nm. Additionally, we want to simulate the behaviour
of a combustion engine. This means that when the throttle pedal is released (i.e. the potentiometer
goes to its lowest setting), the system does not coast but instead applies braking (engine braking).
This effect is achieved using only the throttle module.

Throttle Input Details
Potentiometer: Used as the throttle input. Connected to AIN3 = 0x3090 0x03
Voltage and RPM Control
Error Condition: If the voltage from the potentiometer is lower than 0.2V or higher than 4.8V, an
error will occur (indicating a possible short or broken connection).
0 Nm: At 1V
10 Nm: At 4.5V, the motor should run at the maximum torque of 10 Nm
-5 Nm: At 0.5V, the motor should brake with maximum torque of 5 Nm - With the decrease of the
RPMs the braking torque is also steadily decreased.

Objects to set:

1. Enable Throttle Application:

If the throttle potentiometer is in any position other than at 0 e.g. at motor spins at 140RPM
and you disable the ignition switch, the motor will stop spinning. But if you then start ignition
again it will go directly to the rpm that are set with throttle (in this example back to
140RPM). You need to put the throttle to min.

With this workaround only monodirectional throttle + ignition will work. In the future FW
release, there will be a new object for ignition/enable and it will work also in bidirectional
throttle.
The protection will also be implemented so that it does not spin out of control.

0x4010 0x01 - Thr1_Gen__Enable = 1

2. Enable the Throttle Module:

Use the throttle general object 0x4011 Thr1_Enable to enable the proper module.

0x4011 0x01 Throttle = 1

3. Map Objects to the Application:

Choose the reference value to control (velocity or torque) and map analog/digital
inputs and outputs.

To control torque:

0x4012 0x06 TargetObj = 0x301004

Set the control mode (0 for torque, 1 for velocity):

0x3100 0x01 ControlMode = 0

Define the analog throttle input (potentiometer on AIN3):

0x4012 0x03 ThrottleInput = 0x309003

4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 1
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 1
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef or VelocityRef:
In this example we will use max = 10Nm and min = -5Nm

0x4013 0x0B OutFullPositive = 10
0x4013 0x0C OutFullNegative = -5

Set the setting saying that negative throttle will be treated as brake

0x4013 0x11 IsNegativeBrake = 1

5. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

3.4. Brake module
The brake module implements the brake function within the throttle application, operating similarly
to the throttle module but with a crucial difference: it always outputs torque in the opposite
direction of the current rotation and supports only monodirectional braking. The brake can be
assigned to a different analog input or share the same analog input as the throttle module,
beneficial for configurations where monodirectional throttle is used. In such cases, one direction
from the zero point can manage throttle control while the other handles brake control.

The brake module is used only when the inverter is operating in torque mode. In velocity
mode, it is unnecessary because the velocity control system manages deceleration. For
example, when operating at 3000 RPM, the velocity control system will handle the transition

Table 7: Brake module parameters
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Brake__ZeroVal
ue

0x4014 0x01 At this input value
output is zero.

V

Thr1_Brake__ZeroDea
dBand

0x4014 0x02 Defines how large
zero dead band is

V

Thr1_Brake__EnableD
eadBand

0x4014 0x03 Defines how large
enable dead band is.
Should be lesser or
equal to zero dead
band.

V

Thr1_Brake__MaxInpu
t

0x4014 0x04 At this input value
output is at
maximum
value

V

Thr1_Brake__NonVali
dMax

0x4014 0x05 Any input value
grater then this will
put
throttle module into
error state.

V

Thr1_Brake__NonVali
dMin

0x4014 0x06 Any input value
lesser than this will
put
throttle module into
error state.

V

Thr1_Brake__Progres
sive

0x4014 0x07 At values > 1 brake
will be progressive (it
will slowly rise output
value at beginning
and then sharply on
the end). For values
< 1 it is exactly
opposite - sharply
increase at beginning
and then slow
increase at end.
Mathematical at
normed value (0-1)
out = power(in,
progressive)

/

to 0 RPM. However, in torque mode, if you apply 10 Nm and then reduce the torque to 0 Nm,
the motor will coast rather than braking in a controlled manner.

Thr1_Brake__RateLim
it

0x4014 0x08 Limits how fast
output can change.
Output
can change from 0 to
1 in
1/Thr1_Brake__RateLi
mit s

1/s

Thr1_Brake__OutFull 0x4014 0x09 Output brake torque
when input reaches
max input.

/

Thr1_Brake__OutZero

0x4014 0x0A Output brake torque
when input is at zero
point.

/

Thr1_Brake__Full_RP
M

0x4014 0x0B Between 0 RPM and
the value set by this
parameter, the
braking torque is
gradually increased
from 0% to 100%.
Once the speed
exceeds this value,
full braking torque is
applied. This
approach helps
prevent excessive
braking torque at 0
RPM, especially if the
speed signal is noisy.

/

Table 8: Brake module signals
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Brake__Input 0x4014 0x0C Input signal V

Thr1_Brake__OutNor
m

0x4014 0x0D Normed brake output
(-1 full negative, 1
full
positive)

/

Thr1_Brake__Out 0x4014 0x0E Output in system
units

/

Thr1_Brake__Enabled

0x4014 0x0F If Brake is out of
centre position for
EnableDeadBand -
power stage enabled

Bit

Thr1_Brake__Err 0x4014 0x10 If brake input is
outside NonValidMax
and NonValidMin

3.4.1 Input to Output Transformation
The input-to-output transformation operates similarly to the throttle module's input-output
transformation. A typical example of this process is illustrated in the picture below.

Image not found or type unknown

The slope between the end of the zero-dead-band and Thr1_Brake__MaxInput is defined by the
parameter Thr1_Brake__Progressive, similar to the throttle module. Additionally, you can configure
the brake module to increase brake torque as the input decreases by setting Thr1_Brake__MaxInput
to a value lower than Thr1_Brake__ZeroValue . This setup is especially useful for one-pedal driving,
where the same potentiometer controls both braking and throttle. At lower input values, the
system applies braking, while at higher values, it functions as a throttle. When operating in throttle
mode, no braking is applied; when the pedal is completely released, the system enters braking
mode. The resulting input-to-output transformation for this configuration is shown in the picture
below

Image not found or type unknown

For both modes, it is essential to configure the parameters Thr1_Brake__NonValidMax and
Thr1_Brake__NonValidMin . Failing to do so will result in incorrect operation of the short to ground and
short to power supply error detection.

3.4.2 Examples
To use the brake module, you first need to configure the throttle module and ensure it works as
expected.

- Brake example 1

Description:
Monodirectional throttle & brake using only one analog input.
In this example, a potentiometer is used to adjust voltage from 0V to 5V. The operational range is
0.2V to 4.8V. If the voltage goes outside this range, an error occurs.

Throttle and Brake Operation
Neutral Position: At 2.5V, the motor is in neutral.
Increasing Voltage: Raising the voltage above 2.5V speeds up the motor.
Decreasing Voltage: Lowering the voltage below 2.5V brakes the motor.

Before proceeding with this example, ensure you have completed and prepared a working setup of
"Throttle Example 1" with torque control, not velocity. To achieve this, configure the following
settings:

Set Target Object: 0x4012 0x06 TargetObj = 0x301004
Set Control Mode: 0x3100 0x01 ControlMode = 0

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen__Enable = 1

2. Enable the Throttle & Brake Module:

0x4011 0x01 Throttle = 1
0x4011 0x02 Brake = 1

3. Map Objects to the Application:

Torque control

0x4012 0x06 TargetObj = 0x301004

Check that torque mode is active if not set it with control mode = 0:
0x3100 0x01 ControlMode = 0

Define the analog throttle input (e.g., potentiometer on AIN3):

0x4012 0x03 ThrottleInput = 0x309003

Define the analog brake input (same as ThrottleInput in this example):

0x4012 0x12 BrakeInput = 0x309003

4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 2.5
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 0.5
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef
In this example we will use max = 10Nm and min = 0Nm (if there is no load) -
BIDIRECTIONAL throttle must be dissabled (one of these must be 0) for using only
one analog input as throttle and brake.

0x4013 0x0B OutFullPositive = 10
0x4013 0x0C OutFullNegative = 0

5. Configure the Brake Module:

Set the brake voltage parameters:

0x4014 0x01 ZeroValue = 2.5
0x4014 0x04 MaxInput = 0.5
0x4014 0x05 NonValidMax = 4.8
0x4014 0x06 NonValidMin = 0.2
0x4014 0x09 OutFullPositive = 10

6. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Brake example 2
Description:

In this example, we will use two analog inputs to control the motor:

Analog Input 3: Controls the throttle (motor speed).
Analog Input 2: Controls the brake.

This setup allows you to manage both the acceleration and deceleration of the motor
independently using separate analog inputs.

Objects to set:

1. Same as "Brake example 1"
2. Same as "Brake example 1"
3. Map Objects to the Application:

Torque control

0x4012 0x06 TargetObj = 0x301004

Check that torque mode is active if not set it with control mode = 0:
0x3100 0x01 ControlMode = 0

Define the analog throttle input (e.g., potentiometer on AIN3):

0x4012 0x03 ThrottleInput = 0x309003

Define the analog brake input (e.g., potentiometer AIN2):

0x4012 0x12 BrakeInput = 0x309002

4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 0.5
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 0.5
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef
In this example we will use max = 10Nm and min = 0Nm

0x4013 0x05 OutFullPositive = 10
0x4013 0x05 OutFullNegative = 0

5. Configure the Brake Module:

Set the brake voltage parameters:

0x4014 0x01 ZeroValue = 0.5
0x4014 0x04 MaxInput = 4.5
0x4014 0x05 NonValidMax = 4.8
0x4014 0x06 NonValidMin = 0.2
0x4014 0x09 OutFull = 10

6. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Brake example 3

Description:
Monodirectional throttle & brake using one digital input (when connected full braking applied)
In this example, a potentiometer is used to adjust voltage from 0V to 5V. The operational range is
0.2V to 4.8V. If the voltage goes outside this range, an error occurs.

In this example, we will use one analog input and one digital input

Analog Input 3: Controls the throttle
Digital Input1: Controls the brake and disables the throttle.

Throttle and Brake Operation
Neutral Position: At 0.5V, the motor is in neutral .
Increasing Voltage: Raising the voltage above 0.5V speeds up the motor to max torque of 10Nm.
If brake input is activated throttle is disabled and full braking is applied.

Before proceeding with this example, ensure you have completed and prepared a working setup of
"Throttle Example 1" with torque control, not velocity. To achieve this, configure the following
settings:

Set Target Object: 0x4012 0x06 TargetObj = 0x301004
Set Control Mode: 0x3100 0x01 ControlMode = 0

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen__Enable = 1

2. Enable the Throttle & Brake Module:

0x4011 0x01 Throttle = 1
0x4011 0x02 Brake = 1

3. Map Objects to the Application:

Torque control

0x4012 0x06 TargetObj = 0x301004

Check that torque mode is active if not set it with control mode = 0:
0x3100 0x01 ControlMode = 0

Define the analog throttle input (e.g., potentiometer on AIN3):

0x4012 0x03 ThrottleInput = 0x309003

Define the analog brake input (e.g. DIN1 at object 0x30B0 0x01):

0x4012 0x12 BrakeInput = 0x0x30B001

4. Configure the Throttle Module:

Set the throttle voltage parameters as explained in Section 4.2:

0x4013 0x01 ZeroValue = 0.5
0x4013 0x04 MaxInput = 4.5
0x4013 0x05 MinInput = 0.5
0x4013 0x06 NonValidMax = 4.8
0x4013 0x07 NonValidMin = 0.2

Set the maximum and minimum TorqueRef
In this example we will use max = 10Nm and min = 0Nm.

0x4013 0x0B OutFullPositive = 10
0x4013 0x0C OutFullNegative = 0

Dissable throttle when brake is applied

0x4013 0x0E DisableAtBrake = 1

5. Configure the Brake Module:

Set the brake voltage parameters:
We need to dissable the out of bounds funcitonalites as the digital input has only 2 values
0 and 1.
0x4014 0x01 ZeroValue = 0
0x4014 0x04 MaxInput = 1
0x4014 0x05 NonValidMax = 4.8
0x4014 0x06 NonValidMin = -2
0x4014 0x09 OutFull = 10

6. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

3.5. Pump control module
The Pump Control Module manages the operation of two pumps in the system: the Pump1 = main
pump and the Pump2 = cooling pump.

The Pump1 (main pump) is activated whenever

The throttle application is in the run state,
The cooling pump is active, or
The temperature exceeds the set value (Thr1_Pump__1OnTemperature).

The Pump2 (cooling pump) is regulated by a simple hysteresis controller. There are two options for
activating the Pump2 (cooling pump):
If both Thr1_Pump__2OnTemperature and Thr1_Pump__2OffTemperature are set to -40 °C, the controller
uses the values of Thr1_Pump__1OnTemperature and Thr1_Pump__1OffTemperature . Otherwise, it uses
the directly configured values of Thr1_Pump__2OnTemperature and Thr1_Pump__2OffTemperature .

Following example if Thr1_Pump__2OnTemperature = -40 and Thr1_Pump__2OffTemperature = -40

Table 9: Pump control module parameters

Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Pump__1OnTem
perature

0x4015 0x01 At which temperature
cooling pump1 will be
enabled

°C

Thr1_Pump__1OFFTe
mperature

0x4015 0x02 At which temperature
cooling pump1 will be
disabled.
Must be lower as
Thr1_Pump__Pump1O
nTemperature

°C

Thr1_Pump__2OnTem
perature

0x4015 0x03 At which temperature
cooling pump2 will be
enabled.
If -40, Pump
1thresold will be used
for pump 2.

°C

Thr1_Pump__2OFFTe
mperature

0x4015 0x04 At which temperature
cooling pump2 will be
disabled.
Must be lower as
Thr1_Pump__Pump2O
nTemperature.
If -40, Pump1
threshold will be
used.

°C

Table 10: Pump control module signals
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Pump__Pump1T
emperatureIn

0x4015 0x05 Main pump input
temperature

°C

Thr1_Pump__Pump2T
emperatureIn

0x4015 0x06 Cooling pump input
temperature

°C

3.5.3 Examples
- Pump example 1
Description

Main pump on LS3 0x30A2 0x02 Value
Cooling pump on LS4 0x30A3 0x02 Value

When PWMs are enabled, the main pump is always ON regardless of the input temperatures.

Both Pump1TemperatureIn and Pump2TemperatureIn are used. When PWMs are disabled, if either
value exceeds the setting in Thr1_Pump__1OnTemperature , both pumps turn ON. They turn OFF only
when both values fall below Thr1_Pump__1OffTemperature . When PWMs are enabled main pump is ON
and the logic for cooling pump behaviour is not changed.

Temperature at which we start the pumps = 60 °C
Temperature at which we stop the pumps = 50 °C

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen_Enable = 1

2. Enable the Pump Module:

0x4011 0x03 Pump = 1

3. Map Objects to the Application:

For this module the CoolingInputTemperature1 and CoolingInputTemperature2 are set by
default.
Ctrl_Bridge__StatusHeatsinkTemp is mapped to CoolingInputTemperature1
Ctrl_Gen_Stat__MotorSensorTemp is mapped to CoolingInputTemperature2

0x4012 0x0D CoolingInputTemperature1 = 0x31CE00
0x4012 0x0E CoolingInputTemperature2 = 0x31010A

Next we need to map the digital outputs where our pumps are connected to. In this
example we will use:
Main pump on LS3 0x30A2 0x02 Value
Cooling pump on LS4 0x30A3 0x02 Value

0x4012 0x0B Pump1EnableDO = 0x30A202
0x4012 0x0C Pump2EnableDO = 0x30A302

4. Configure the Pump Module:

Set the temperature at which the pump starts and stops.

0x4015 0x01 Pump1OnTemperature = 60

0x4015 0x02 Pump1OffTemperature = 50

5. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Pump example 2
Description

Main pump on LS3 0x30A2 0x02 Value
Cooling pump on LS4 0x30A3 0x02 Value

With this example we use separate temperature thresholds for each pump. the logic is the same as
in example 1 the only difference is now that each pump has its own hysteresis when to turn on and
off.

When PWMs are enabled, the main pump is always ON regardless of the input temperatures.

Temperature at which we start the main pump = 60 °C
Temperature at which we stop the main pump = 50 °C

Temperature at which we start the cooling pump = 80 °C
Temperature at which we stop the cooling pump = 70 °C

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen_Enable = 1

2. Enable the Pump Module:

0x4011 0x03 Pump = 1

3. Map Objects to the Application:

For this module the CoolingInputTemperature1 and CoolingInputTemperature2 are set by
default.
Ctrl_Bridge__StatusHeatsinkTemp is mapped to CoolingInputTemperature1
Ctrl_Gen_Stat__MotorSensorTemp is mapped to CoolingInputTemperature2

0x4012 0x0D CoolingInputTemperature1 = 0x31CE00
0x4012 0x0E CoolingInputTemperature2 = 0x31010A

Next we need to map the digital outputs where our pumps are connected to. In this
example we will use:
Main pump on LS3 0x30A2 0x02 Value
Cooling pump on LS4 0x30A3 0x02 Value

0x4012 0x0B Pump1EnableDO = 0x30A202
0x4012 0x0C Pump2EnableDO = 0x30A302

4. Configure the Pump Module:

Set the temperature at which the pump starts and stops.

0x4015 0x01 Pump1OnTemperature = 60
0x4015 0x02 Pump1OffTemperature = 50
0x4015 0x01 Pump1OnTemperature = 80
0x4015 0x02 Pump1OffTemperature = 70

1. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

3.6. DC-DC turn on delay module
DC-DC turn on delay module enables an external DC-DC module with a delay after start-up. The
delay time

can be configured by setting parameter Thr1_DCDC__StartupDelay

Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_DCDC__Startup
Delay

0x4017 0x00 Delay time after
which external DC-DC
module is turned on

s

3.6.1 Examples
- DC-DC delay example 1
The relay is connected to LS2 0x30A1 0x02 Value
DC-DC turn on delay set to 5s.

Objects to set:

1. Enable Throttle Application:

0x4010 0x01 - Thr1_Gen_Enable = 1

2. Enable the DC-DC Module:

0x4011 0x05 DC_DC = 1

3. Map Objects to the Application:

DC-DC relay is on LS2 0x30A1 0x02 Value

0x4012 0x0F DCDCenableDO = 0x30A102

4. Configure the DC-DC Module:

Set the delay to 5s

0x4017 0x00 Thr1_DCDC__StartupDelay = 5

5. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.

Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

3.7. SOC monitoring and charging
detection module
The SOC (State of Charge) monitoring module and the charging detection module are implemented
together due to their similarities. However, both modules can be enabled and disabled
independently. SOC monitoring requires a Battery Management System (BMS) to detect SOC. Note
that the BMS is not included in the emDrive. If SOC monitoring is needed, an independent BMS
must be connected to the CAN bus.

Table 11: SOC monitoring module and charging detection module parameters
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Bat__StartLimiti
ngSOC

0x4018 0x01 SOC percentage at
which throttle
limiting starts.

%

Thr1_Bat__EndLimitin
gSOC

0x4018 0x02 SOC percentage at
which throttle
limiting is at
maximum

%

Thr1_Bat__EndLimitin
gThrottleOut

0x4018 0x03 Maximum torque
output when throttle
limiting
is at maximum.

/

Thr1_Bat__ThrottleLi
mitRamp

0x4018 0x04 Limits how fast
throttle limiting can
change.

1/s

Table 12: SOC monitoring module and charging detection module signals
Object
Name

Object
Index

Object
Subindex

Description Unit

Thr1_Bat__Valid 0x4018 0x05 If 0, no BMS is
available

/

Thr1_Bat__SOC 0x4018 0x06 Battery SOC in
percentage

%

Thr1_Bat__LimitThrott
le

0x4018 0x07 Current throttle limit
in system units

/

Thr1_Bat__LimitNorm

0x4018 0x08 Normed current
throttle limit. (1 -> no
limiting, 0
-> maximum allowed
limit)

/

Thr1_Bat__Charging 0x4018 0x09 If 1, charging is
detected. If 0
charging is not
detected.

Bit

3.7.1 SOC Monitoring Module
The SOC monitoring module tracks the SOC state as reported by the BMS.

Behaviour:
If SOC drops below the level specified by the parameter Thr1_Bat__StartLimitingSOC ,
the module will start limiting the maximum output.
If SOC falls below the level specified by Thr1_Bat__EndLimitingSOC , the maximum
output will be set to the value given in Thr1_Bat__EndLimitingThrottleOut .
When SOC is between Thr1_Bat__StartLimitingSOC and Thr1_Bat__EndLimitingSOC , the
maximum output is linearly reduced. The reduction goes from the maximum output
(as defined in the throttle module) at Thr1_Bat__StartLimitingSOC to the output defined
in Thr1_Bat__EndLimitingThrottleOut at Thr1_Bat__EndLimitingSOC .

Image not found or type unknown

Throttle Limiting Speed:
Controlled by the parameter Thr1_Bat__ThrottleLimitRamp .
The limiting speed functions similarly to rate limiting in the throttle and brake
modules, where throttle limiting can range from 0 to 1 in 1/Thr1_Bat__ThrottleLimitRamp
seconds.

3.7.2 Charging detection Module

The charging detection module monitors whether the battery is being charged and reports this
status to the throttle module.

Behaviour::
If a BMS is present, the module queries the BMS to check if the battery is currently
being charged.
Alternatively, the module can observe the state of the input mapped to the
parameter Thr1_Obj__ChargingDetectDIvalue :

If the value is 1, the battery is considered to be charging.
If the value is 0, the battery is considered to be not charging.

This setup allows for accurate monitoring and management of the battery's state of charge and
charging status, ensuring optimal performance and safety.

3.7.4 Examples

- SOC example 1
Description:
In this example we first need a working example of Throttle module to control torque. (It is also
possible to control velocity.)
Next we need the following values:

Battery (BMS) valid/present
SOC in percent

To achieve this we can use the PDOs to get the values - in this example we will assume that we get
the upper values via CAN and we set the values to our 0x2051 Customer_Data_16bit__Value. How
to configure the PDOs refer to the user manual section 9.4-Data transfer – Process Data
Object (PDO).

0x2051 0x01 Customer_Data_16bit__Value1 = Battery (BMS) valid/present (needs to be higher
than 0)
0x2051 0x02 Customer_Data_16bit__Value2 = SOC in percent

We will start limiting the output when the battery has SOC = 10%

Battery (BMS) valid/present needs to be higher than 0, otherwise inverter thinks there is no
BMS.

We will limit the output with a ramp of value 0.01 until we reach SOC = 5%, after which we stay at
value 10Nm (in case of velocity control the unit of this value will be in PRM - 10RPM).

Objects to set:

1. Enable the SOC Module:

Use the throttle general object 0x4011 Thr1_Enable to enable the proper module.

0x4011 0x06 SOC = 1

2. Map Objects to the Application:

As mentioned above we have the required date on the Costomer_Data_16bit_Values.

Customer_Data_16bit__Value1 = 0x2051 0x01
Customer_Data_16bit__Value2 = 0x2051 0x02

We set the following:

0x4012 0x07 BatValid = 0x205101
0x4012 0x08 BatSOC = 0x205102

2. Configure the SOC Module:

Set at what SOC percent we start limiting the output (at 10 %):

0x4018 0x01 StartLimitingSOC = 10

Set at what SOC percent we stop limiting the output (at 5 %):

0x4018 0x02 EndLimitingSOC = 5

Set what will the max value output be at the value EndLimitingSOC (10Nm):

0x4018 0x03 EndLimitingThrottleOut = 10

Set the ramp parameter for slope:

0x4018 0x04 ThrottleLimitRamp = 0.01

3. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Charging detection example 2
Description:
You need a working throttle example.
As mentioned above we can detect charging with the state that is reported by BMS for that we
need to get the state of the BMS in this example we will use method as in SOC example 1, where
use the PDOs and save the state to Costomer_Data_16bit_Value.

Customer_Data_16bit__Value1 = 0x2051 0x01 = Battery (BMS) Valid/present (needs to be higher than 0)
Customer_Data_16bit__Value3 = 0x2051 0x03 = State of BMS

Objects to set:

1. Enable the SOCModule and ChargingDetect Module:

Use the throttle general object 0x4011 Thr1_Enable to enable the proper module.

0x4011 0x06 SOC = 1
0x4011 0x07 ChargingDetect = 1

2. Map Objects to the Application:

As mentioned above we have the required date on the Costomer_Data_16bit_Values.

Customer_Data_16bit__Value1 = 0x2051 0x01
Customer_Data_16bit__Value3 = 0x2051 0x03

We set the following:

0x4012 0x07 BatValid = 0x205101
0x4012 0x09 BatState = 0x205103

2. Configure the ChargingDetect Module:

With this module there is no other configuration needed. If the value on
Customer_Data_16bit__Value3 == (charge = 4) or (charge_done = 5) -> driving is disabled.

3. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

- Charging detection example 3
Description:
You need a working throttle example.
The next method is to detect charging with a digital input, for that we will use digital input 4.

0x30B0 0x04 DIN4

Objects to set:

1. Enable the SOCModule and ChargingDetect Module:

Use the throttle general object 0x4011 Thr1_Enable to enable the proper module.

0x4011 0x06 SOC = 1
0x4011 0x07 ChargingDetect = 1

2. Map Objects to the Application:

As mentioned above we have the required date on the Costomer_Data_16bit_Values.

Customer_Data_16bit__Value1 = 0x2051 0x01
DIN4 = 0x30B0 0x04

We set the following:

0x4012 0x07 BatValid = 0x205101
0x4012 0x0A ChargingDetectDlvalue = 0x30B004

2. Configure the ChargingDetect Module:

With this module there is no other configuration needed. If the value of DIN4 == 1 ->
driving is disabled.

3. Save and Reset:

Save the settings (Ctrl+S) and perform a reset.
Switch to operational mode.
Test
Enable auto start if everything works correctly (inverter will always go to operational
mode after reset).

0x3000 0x03 AutoStart = 1

Revision #43
Created 10 May 2024 09:59:18 by Matic Jehart
Updated 3 March 2025 06:17:37 by Matic Jehart

