Lua Manual

Disclaimer

The EMSISO d.o.o. scripting functionality, based on the Lua programming language, is
provided to enable flexibility and customization for motor control applications. However,
EMSISO d.o.0. assumes no responsibility or liability for any damages, malfunctions, injuries,
or losses resulting from the use of scripts provided by EMSISO d.o.0. or scripts created,
modified, or executed by users.

Users are fully responsible for testing and verifying all scripts in a controlled and safe
environment before deployment. Any script used in conjunction with EMSISO d.o.o0. products
is done at the user’s own risk.

By using the scripting feature, you acknowledge and agree to release EMSISO d.o.o. from all
claims, demands, or liability for any incidents that may arise from its use.

1. General

1.1 Purpose

e This manual helps you create and run Lua scripts on emDrive.
e It also informs you about any warnings and known issues.

1.2 Scope

e The manual covers Lua scripting features, including how to:
o Download scripts
o Control scripts
o Debug scripts
o Use functions provided by the emDrive library
e It also lists known issues and limitations of the scripting functionality.

1.3 Important Note

e This manual assumes you already know Lua and emDrive Configurator software.
e |t is valid for Lua version 5.4. For more details on Lua, visit:

o Lua 5.4 Manual

o Programming in Lua

2. emDrive library

2.1 General

The emDrive library is used instead of the standard Lua libraries. This library includes some
functions that are identical to those in the standard Lua library, some that have been modified, and
others that are unique to emDrive.

Do not overwrite the emDrive library functions and variables.

The emDrive library is organized into different sets, each focused on a specific group of
functionalities. This section will describe these sets and their functions and variables in detail.

Here is an example of how to use a library function. This example will show a legend that explains
how to read the prototypes of library functions. Words in blue represent variable types, such as
arguments or return values. These types follow standard Lua conventions, with the addition of the
"integer" type, which represents whole numbers.

When your script calls a function from the emDrive library, the arguments you provide must match
the prototype exactly, including the type and, for tables, their structure. If they do not, an error will
occur.

number | nil retl, boolean ret2 = Namespace.FunctionName({integer arglFieldl, string
arglField2} argl,
{integer, integer, integer [5:5-11], integer [13]} arg2, [, string arg3], arg4...)

This is an example of a function named Namespace.FunctionName . It takes in: 2 fixed arguments, 1
optional

argument and a variable number of arguments. It also returns 2 values where the first can also be
nil.

Name Description

Arguments argl Table with two named fields
arglFieldl of type integer and
arglField2 of type string.

arg2 Table with unnamed fields with all
integer types at index 1, 2, 5 with
size1to 7 and 13.

https://www.lua.org/manual/5.4/
https://www.lua.org/pil/contents.html

arg3 Optional string argument.

arg4d Variable number of arguments of
any type.
Returns retl First returned value which can be
either a number type or nil.
ret2 Second returned value which is of

boolean type.

Functions can be called with more arguments then expected in which case excess
arguments are ignored.

The emDrive library can raise errors in addition to those raised by the Lua kernel, such as
accessing nil values. These library errors usually occur when the type or value of an argument does
not match what is expected.

For each function in the emDrive library, the possible errors (exceptions) and the conditions that
cause them will be listed.

2.2 Functions

2.2.1 Base

This library provides base script functionality that is not specific to any part of the emDrive
hardware (HW) or firmware (FW).

Error(string message [, integer level])

The Error function raises an error with a custom message and specifies the level of the error
position. It is useful for throwing exceptions, such as for debugging purposes. This function is
equivalent to the standard error() function in Lua and never returns.

Table 1: Error() prototype description

Name Description
Arguments message Error message shown.

level Specify how to get the error
position:

0, error position is not
added,

1 (default), the error
position is where the error()
function was called,

2 points the error to where
the function that called
error() was called,

and so on...

2.2.21/0

This library works with two main objects: Lua_ 10 Input and Lua_ 10 Output . These objects facilitate
communication between the script and the external world, such as displaying messages or
providing debugging arguments to the script.

e Access: These objects can be accessed via the CANopen index 0x2040 .
e Purpose:

o Lua_ IO Input : Used to input data into the script.

o Lua_ |0 Output : Used to output data from the script.

By using these objects, the script can efficiently exchange information with external systems.

M@débﬁﬁ Wu@tbjﬁ@ﬁﬁe unknown

number | string | nil value = 10.Read([option...])
You can read values from the input object using specified options.
Options:

e When the 'n' option is selected, if the value cannot be converted to a number, nil is
returned.
e By passing an integer, you can read that many number of characters.

This function is equivalent to the standard io.read() function in Lua.

Table 2: 10.Read() prototype description

Name Description

option How to interpret the input string:
‘n’ as a number,
‘I’ (default) as one line
string without newline,
‘L” as one line string with
newline if exists,

‘a’ as string of all text,
0,1, 2, ... as number of
characters.

“Returns L value Interpreted input.

Table 3: 10.Read() exceptions

option is not an integer nor a string.

option is a string longer than 1 character.
option is a string but not one of the valid values.

I0.Write(string text...)
You can write text to the output object using this function.

e Behavior:
o If the text is short enough, it is appended to the existing output string.
o If the text is too long, the existing output string is overwritten.

This function is equivalent to the standard io.write() function in Lua.

Table 4: 10.Write() prototype description

text Text to write to output object.

Table 5: 10.Write() exceptions

text is not a string.

|O.Print(object...)
This function converts an object to a string and then writes the result to the output object.
This function is equivalent to the standard print() function in Lua.

Table 6: 10.Print() prototype description

object Objects to convert to string and
write to output object.

2.2.3 Time

This library provides functions for time keeping and inserting delays in your scripts.

integer time = Time.GetMs()

This function retrieves the current time in milliseconds since the device was powered on. The
maximum value is limited to 232 - 1.

Table 7: Time.GetMs() prototype description

time Elapsed milliseconds since power
on.

Time.WaitMs(integer time)
This function halts the script execution for a specified amount of time using this function.

Table 8: Time.WaitMs() prototype description

“Returns L time Milliseconds to wait.

Table 9: Time.WaitMs() exceptions

time is negative or 0.

integer newStartTime = Time.WaitMsUntil(integer startTime, integer waitTime)

This function halts script execution for specified time from the provided starting time. This function
can be used to implement periodic execution independent of logic execution duration.

Table 10: Time.WaitMsUntil() prototype description

~ 'Name Description
startTime Time (milliseconds) from which
waiting time is measured.
waitTime Milliseconds to wait.
_ newStartTime Time (milliseconds) at which script
was halted.

Table 11: Time.WaitMsUntil() exceptions

startTime is negative or 0.
waitTime is negative or 0.

2.2.3 CAN

This library is used to establish communication and transfer data over CAN. It provides functionality
to send and receive CAN messages.

Note: This library does not support CAN FD (Flexible Data-rate).

This library supports two modes of operation for CAN communication. The mode is selected during
the initialization of CAN.

Table 12: CAN modes of operation

CAN_RX_TX CAN shall be used to send and receive messages (user
is required to implement CAN.Received(message)
function).

CAN_TX_ONLY CAN shall be used only to send messages.

CAN.Initialize(mode, boolean useExtendedFrame [, integer rxID, integer rxIDMask])

To use CAN communication, initialize CAN with this function. It can be called multiple times with
different arguments, but only the last configuration will be used.

o« rxIDMask Argument: Required only when the operating mode is set to CAN_RX TX .

Table 13: CAN.Initialize() prototype description

mode CAN mode of operation (see Table
12).

useExtendedFrame Will extended frames be
transferred?

rxID Frame ID to receive.

rxIDMask Receive filter ID mask.

Table 14: CAN.Initialize() exceptions

mode is not one of the valid values.

useExtendedFrame is not boolean.

rxID is not an integer.

mode is set to CAN_RX_TX and rxIDMask is not an integer.
CAN initialization failed (should never happen).

CAN.Send(integer id, {integer [1:1-8]} data)
Use this function to send a CAN frame with a specified ID and data.

Table 15: CAN.Send() prototype description

id Sent frame ID.
data 1 to 8 bytes of data.
Table 16: CAN.Send() exceptions

id is not an integer.

data is not a table.

Length of data is more than 8.

Value of data is not an integer.

Value of data is more than OxFF.

CAN send failed (should never happen).

CAN.Received({integer ID, integer Length, integer Data[1:1-8]} message)

This function is called whenever a CAN message is received.

e User Implementation Required: You must implement this function if CAN is initialized
in CAN_RX_TX operating mode.

Table 17: CAN.Received() prototype description

Name Description
Arguments message Received message.

2.2.4 CANopen

This library is used to interact with the CANopen protocol stack.

e CANopen Object Representation: Internally, a CANopen object is represented as a
table with two values: index and subindex .

The CANopen stack includes a network management state machine that defines the
communication behavior of a CANopen device. While there are multiple possible states, only a few
are regularly used and available to the user.

Table 18: CANopen NMT states

NMT state Description
CO_UNKNOWN NMT in unknown state (unreachable).
This state cannot be set by user.
CO_OPERATIONAL Device can use all supported communication objects.
This state can be set by user.
CO_STOPPED Device operation is stopped.
This state cannot be set by user.
CO_PREOPERATIONAL First state after initialization indicating that device is

ready to work. Limited message transfer support.
This state can be set by user.

CO_RESET _NODE Application reset. Application objects set to their
power-on or default values.
This state cannot be set by user.

CO_RESET _COMM Communication reset. Communication objects are set
to their power-on or default values.
This state cannot be set by user.

state = CANopen.GetNMTState()

Use this function to retrieve the currently set Network Management (NMT) state of the CANopen
device.

Table 19: CANopen.GetNMTState() prototype description

state Currently set NMT state (see Table
18).

CANopen.SetNMTState(state)

Use this function to request the CANopen stack to change the Network Management (NMT) state of
the device.

Table 20: CANopen.SetNMTState() prototype description

"Arguments | state Next NMT state (see Table 18).

Table 21: CANopen.SetNMTState() exceptions

state is not one of the valid values.

number value = CANopen.GetObjectValue({integer, integer} object)
Use this function to retrieve the value of a specified object.

Table 22: CANopen.GetObjectValue() prototype description

object CANopen object.

Table 23: CANopen.GetObjectValue() exceptions

object is not a table.

Length of object is not 2.
Value at first index of object is not an integer.
Value at second index of object is not an integer.

Invalid object index and/or subindex.

CANopen.SetObjectValue({integer, integer} object, number value)

Use this function to set the value of a specified object.

Table 24: CANopen.SetObjectValue() prototype description

Name Description
Arguments object CANopen object.
value Object value.

Table 25: CANopen.SetObjectValue() exceptions
Exception
object is not a table.
Length of object is not 2.
Value at first index of object is not an integer.
Value at second index of object is not an integer.
Invalid object index and/or subindex.

Value is not a number

2.2.5 Motor

This library is used to operate the motor. You can set operating parameters and retrieve the
motor's current state and status.

The motor can be controlled in three distinct modes. Depending on the chosen mode, the related
reference will be used by the motor control algorithm.

Table 26: Motor control modes

Motor control mode Description
TORQUE_MODE Motor is torque controlled.
Set requested torque with Motor.SetReferenceTorque()

VELOCITY_MODE Motor is velocity controlled.
Set requested velocity with
Motor.SetReferenceVelocity().

POSITION_MODE Motor is position controlled.
Set requested torque with
Motor.SetReferencePosition().

Motor control operates with a state machine that can be in one of multiple states. This state
machine is responsible for top-level motor control functions such as initialization, execution,
calibration, and error handling.

o State Execution: Some states are executed before the script runs and will not be visible

to the user.

Table 27: Motor control states

Motor control state
MOTOR_UNDEFINED
MOTOR_INITIALIZATION
MOTOR_SELF_TEST
MOTOR_OFF

MOTOR_ON

MOTOR_ERROR

MOTOR_CALIBRATION

Description

Motor control in undefined state (internal error).

Motor control is initializing.

Motor control is performing start-up self-tests.

Motor control is initialized and disabled. Controlling the
motor is not possible. Reference values have no effect.
Motor control is initialized and enabled. Motor is
controlled according to mode and reference value such
that the operating conditions are always within defined
limits.

Motor control detected an error and was disabled. This
state can be entered in multiple ways: limits
overreached, failed calibration and other.

Motor control is being calibrated. In this state
characteristics of the motor and angle sensor are being
measured.

Motor.Enable()

Enable motor control to have the motor operate according to the set mode and the corresponding

reference value.

Motor.Disable()

Disable motor control to stop the motor.

Motor.Recover()

Use this function to attempt recovery from a motor control error.

Note: This function is only applicable when the motor control is in an error state.

Motor.SetControlMode(mode)
Use this function to set the motor control mode.

Table 28: Motor.SetControlMode() prototype description

mode Motor control mode (see Table 26).

Table 29: Motor.SetControlMode() exceptions

mode is not one of the valid values.

state = Motor.GetState()
Retrieve the current state of the motor control.
Table 30: Motor.GetState() prototype description

state Motor control state (see Table 27).

integer warnings = Motor.GetWarnings()

Retrieve the currently active motor control warnings.

Table 31: Motor.GetWarnings()

warnings Active warnings.
Refer to emDrive manual or related
CANopen object for value meaning.

integer protectionsLow = Motor.GetProtectionsLow()

Retrieve the currently active motor control protections (first 32 bits).

Table 32: Motor.GetProtectionsLow()

protectionsLow Active protections (first 32bits).
Refer to emDrive manual or related
CANopen object for value meaning.

integer protectionsHigh = Motor.GetProtectionsHigh()

Retrieve the currently active motor control protections (last 32 bits).

Table 33: Motor.GetProtectionsHigh()

protectionsHigh Active protections (second 32 bits -
currently empty meant for future
FW releases).
Refer to emDrive manual or related
CANopen object for value meaning.

number velocity = Motor.GetReferenceVelocity()
Retrieve the currently set reference velocity.

Table 34: Motor.GetReferenceVelocity()

velocity Velocity [RPM].

Motor.SetReferenceVelocity(number velocity)
Set the reference velocity.

Table 35: Motor.SetReferenceVelocity() prototype description

velocity Velocity [RPM].

Table 34: Motor.SetReferenceVelocity() exceptions

velocity is not a number.

number torque = Motor.GetReferenceTorque()
Retrieve the currently set reference torque.

Table 36: Motor.GetReferenceTorque() prototype description

torque Torque [Nm].

Motor.SetReferenceTorque(number torque)
Set the reference torque.

Table 37: Motor.SetReferenceTorque() prototype description

torque Torque [Nm].

Table 38: Motor.SetReferenceTorque() exceptions

torque is not a number.

number position = Motor.GetReferencePosition()
Retrieve the currently set reference position.

Table 39: Motor.GetReferencePosition() prototype description

position Position [°].

Motor.SetReferencePosition(number position)
Set the reference position.

Table 40: Motor.SetReferencePosition() prototype description

position Position [°C].

Table 41: Motor.SetReferencePosition() exceptions

position is not a number.

number velocity = Motor.GetVelocity()
Retrieve the current motor velocity.
Table 42: Motor.GetVelocity() prototype description

velocity Velocity [RPM].

number torque = Motor.GetTorque()
Retrieve the current motor torque.

Table 43: Motor.GetTorque() prototype description

torque Torque [Nm].

number position = Motor.GetPosition()
Retrieve the current motor position.
Table 44: Motor.GetPosition() prototype description

position Position [°C].

2.2.6 Digital

This library is used to manipulate digital I/Os (ports). It enables writing to and reading from digital
ports.

Every emDrive contains a set of digital ports that can be freely used by the user application. Some
of these ports are writable, while others are read-only. Note that some ports might not be available
on all emDrives. To see which ports are available, refer to the manual or the EDS of your emDrive

Table 45: Digital ports

LOW SIDE_1 Low-side switch 1.
LOW _SIDE_2 Low-side switch 2.
LOW _SIDE_3 Low-side switch 3.
LOW SIDE 4 Low-side switch 4.
HIGH_SIDE_1 High-side switch 1.
DIGITAL_IN_1 Digital input 1.

This port is read-only.
DIGITAL_IN_2 Digital input 2.

This port is read-only.
DIGITAL_IN_3 Digital input 3.

This port is read-only.
DIGITAL_IN_4 Digital input 4.

This port is read-only.
DIGITAL_IN_5 Digital input 5.

This port is read-only.
DIGITAL_IN_6 Digital input 6.

This port is read-only.
DIGITAL_IN_7 Digital input 7.

This port is read-only.

number state = Digital.Get(port)
Retrieve the digital state of the port.

Table 46: Digital.Get() prototype description

‘Arguments port Digital port (see Table 44).
state Value of 0 - 1 representing signal’s
duty cycle.

Table 47: Digital.Get() exceptions

port is not one of the valid values.

Digital.Set(port, number state)

Set the digital state of the port.

Table 48: Digital.Set() prototype description

port Digital port (see Table 44).
state Value of 0 - 1 representing signal’s
duty cycle.

Table 49: Digital.Set() exceptions

port is not one of the valid values.
state is not a number between 0 and 1.

2.2.7 Analog

This library is used to retrieve values from analog inputs (ports).

Every emDrive contains a set of analog ports that can be freely used by the user application. All of
these ports are read-only. Note that some ports might not be available on all emDrives. To see
which ports are available, refer to the manual or the EDS of your emDrive.

Table 50: Analog ports

ANALOG_IN_1 Analog input 1.
ANALOG_IN_2 Analog input 2.
ANALOG_IN_3 Analog input 3.
ANALOG_IN_4 Analog input 4.
LOW _SIDE_1 VOLTAGE Low-side switch 1 voltage measurement.
LOW_SIDE_1_CURRENT Low-side switch 1 current measurement.
LOW _SIDE_2 VOLTAGE Low-side switch 2 voltage measurement.
LOW_SIDE_3_VOLTAGE Low-side switch 3 voltage measurement.
LOW _SIDE_4 VOLTAGE Low-side switch 4 voltage measurement.
HIGH_SIDE_1 VOLTAGE High-side switch 1 voltage measurement.
DIGITAL_IN_1 Digital input 1.
DIGITAL_IN_2 Digital input 2.
DIGITAL_IN_3 Digital input 3.
DIGITAL_IN_4 Digital input 4.
DIGITAL_IN_5 Digital input 5.
DIGITAL_IN_6 Digital input 6.
DIGITAL_IN_7 Digital input 7.

number value = Analog.Get(port)

Retrieve the analog value on the port.

Table 51: Analog.Get() prototype description

Name Description
Arguments port Analog port (see Table 49).
Returns value Analog value.

Table 52: Analog.Get() exceptions

Exception
port is not one of the valid values.

3. Scripting

3.1 Setting Up Lua Scripting with Visual
Studio Code

To make Lua scripting easier, follow these steps to set up Visual Studio Code with the Lua
extension:

1. Install Visual Studio Code
e If you don't have it yet, download and install Visual Studio Code.
2. Add the Lua Extension
e Open Visual Studio Code.
e Go to the Extensions view (click on the square icon on the sidebar or press
Ctrl+Shift+X).
e Search for "Lua" and install the Lua extension by sumneko.

im@ageopRgnd or type unknown

3. Create a Folder for Libraries
e Make a new folder on your computer to store the emdrive library. For example, you
can name it D:\Lualibraries .
e Inside the folder extract the emdrive.7z which you get directly from us.
D:\LuaLibraries\emdrive
4. Configure Developer Mode and Add Library Path
e Open Visual Studio Code.
e Press ctrl+P to open the search bar.
e Type =>settings Or >Open User Settings (JSON) and select "Open User Settings (JSON)"
from the list.

iﬂh@g@qﬂﬁgnd or type unknown

http://help.emsiso.com/uploads/images/gallery/2024-04/0MXimage.png
http://help.emsiso.com/uploads/images/gallery/2024-07/Cjjimage.png

5. Edit User Settings (JSON)
e In the opened settings.json file, add the following code.

"Lua.misc.parameters": [
"--develop=true"

]I
"Lua.workspace.checkThirdParty": true,

"Lua.workspace.userThirdParty": ["path_to_our_library"]

e Make sure to keep any existing code intact. Add a comma at the end of the last line
of the existing code, then paste the new code below it. Update the path to match
your folder (D:/LuaLibraries). Use forward slashes instead of backslashes.

6. Save and Close
e Save the changes to settings.json .
e Close Visual Studio Code.

Example of "settings.json":

imgeoprbgnd or type unknown

3.2 Getting Started with Lua Scripting

3.2.1 Create "firstscript.lua"

1. Create a New Folder
e Make a new folder for your project.
2. Open the Folder with Visual Studio Code
e Right-click the folder and select "Open with Code."
iﬂh@gﬁopﬂ)gnd or type unknown
e This will open Visual Studio Code with your new folder as the workspace.
3. Create a New Lua Script
e In the Explorer window of Visual Studio Code, right-click and select "New File."
iﬂ}a@geolﬂﬂ)gnd or type unknown
e Name the file firstscript.lua (valid files are also "firstscript.txt", "firstscript". But it is
better to use .lua which can use our emdrive Library in VS-code).

Note: Only the content of the script is transferred, not the file name.

http://help.emsiso.com/uploads/images/gallery/2024-07/mdximage.png
http://help.emsiso.com/uploads/images/gallery/2024-07/RvZimage.png
http://help.emsiso.com/uploads/images/gallery/2024-07/3fOimage.png

Limitation: You can store only one script at a time on the emDrive.

3.2.2 Structure

Initialization Routine

e Function Requirement: Your script must include a function named Initialize() .

e Execution: This function is the first to run when the script is executed and runs only
once.

e Purpose: Use this function to initialize hardware and firmware, such as:

Setting up CAN

Enabling the motor

Setting outputs

Setting global variables

o

o

o

o

Loop Routine

e Function Requirement: Your script must include a function named Loop() .
e Periodic Execution: This function runs periodically based on the LoopPeriodMs variable,
which represents the period in milliseconds.
o Setting the Period: LoopPeriodMs can be set globally or within the Initialize()
function.
e Purpose: Use the Loop() function for tasks that need regular updates, such as:
o Setting motor velocity
o Parsing CAN frames
o Reading inputs and setting output ports

Minimum Loop Period: The minimum allowed loop period is 10 milliseconds.
Execution Time: Ensure the Loop() function completes within the set period to maintain
deterministic execution. If the loop takes longer, it can cause unpredictable behavior.

Priority Consideration: The firmware on the emDrive has higher priority than the script,
which means script execution may be interrupted by higher priority tasks.

Use the resource monitor (see the Resource Monitor section) to measure loop duration and
determine the minimum possible loop period.

The resource monitor can also show the maximum loop duration when interrupted by higher
priority tasks.

Data Transfer: Transferring large data over CAN/CANopen will completely block script
execution.

3.3 Executing script

After you've created your script, it is time to download it to emDrive and execute it. For these
purposes, a few CANopen objects are provided, as seen in Figure 3. They are grouped together and
are accessible at index 0x2040.

age noffpund or type unknown

Table 52 provides a short description of objects related to script execution. More detailed meanings
and use cases will be presented in the following sections.

Table 53: Script execution objects description

Name Description

IsEnabled Defines if Lua feature is enabled on particular emDrive:
0: Lua feature disabled
1: Lua feature enabled

Status Lua status:

: File is non-existent or corrupted,

: Compilation failed (see Output),

: Execution failed (see Output),

: Downloaded file is valid,

: Script execution is paused,

: Script is executing,

: Script timed out and was stopped.

o U A W N H O

Control Lua script control:
0: Do nothing,
1: Pause,
2: Run,
3: Restart.
IsAutoStart Should script be started automatically after device
powers on?
Script Download or upload Lua script.
I0_Input Script input object. This object can be used to pass
values/arguments to the script during runtime.
I0_Output Script output object. This object is used to display error
messages and can be used by script to print arbitrary
text messages.

3.3.1 Download/Upload

e To download the script to emDrive

click on Script object (0x2040, 0x5),

check “Write from file”,

click the “...” button which brings up an open file dialog where you select your script,
click “Write” button which will download the script to emDrive,

after successful download you should see a green progress bar with “Successful” label.

e whH

age noyfpund or type unknown

e To upload the script - this reads back the script currently stored on emDrive:

1. click on Script object (0x2040, 0x5),
2. click the “Read” button which will upload the script from emDrive and display it in the
“Description” text box.

age nofpund or type unknown

3.3.2 Control

Once the script has been successfully downloaded and verified, three control options become
available through the Control object (0x2040, 0x3).

1. Pause (Control = 1): This will halt the currently executing script until Run or Restart is
set. It will not stop the motor, disable outputs, or otherwise modify the state of the
emDrive from what was last set by the script. This has no effect if the script is not
executing.

2. Run (Control = 2): This will resume execution of a paused script from where it was left
off. If the script is not executing nor paused but is downloaded and verified, it will start
executing the downloaded script. This has no effect if the script is already executing.

3. Restart (Control = 3): This will terminate the currently executing or paused script,
recompile, and restart it. If the script is not executing nor paused but is downloaded and
verified, it will start executing the downloaded script.

If a script is already executing when a new script is downloaded, the executing script is terminated
as the download is initiated. After the new script is successfully downloaded and verified, it is
automatically executed.

NOTE: The script is executed only after motor control has been initialized, which may delay
script execution after the device powers on (usually by approximately 100 ms, although this
value may vary).

3.3.3 Errors

When an error with the script is detected, the Status object (0x2040, 0x2) is set to a value
signaling the type of error. There are four distinct types of errors that are detectable at different
stages of script execution:

1. File is non-existent or corrupted (Status = 0): This is set when the script is not
stored on the emDrive, or the stored script is corrupted. This error is triggered when script
verification fails, either when the device powers on or whenever a new script is
downloaded.

2. Compilation failed (Status = 1): This is set when the script could not be compiled,
which could be caused by syntax errors or running out of memory. This error is triggered
every time script compilation fails, such as when the script is restarted, executed for the
first time, or downloaded while another script is already executing, causing the new script
to be automatically compiled after downloading.

3. Execution failed (Status = 2): This is set when an error occurs during runtime—such as
in initialization, loop, or other required routines—caused by several reasons like accessing
nil objects, passing invalid values, missing functions, running out of memory, and others.
This error is also raised if the Error() function is called from within the script.

4. Script timed out and was stopped (Status = 6): This is set when the initialization,
loop, or other required routines take longer to execute than expected.

The initialization routine must execute within 100 ms, while the loop and other routines are
required to execute within 2 X LoopPeriodMs .

Further details of what went wrong with the script can be retrieved from the output object.

All the above-mentioned errors are permanent. When an error is raised, emDrive protection is
activated, and emDrive enters an error state from which it cannot recover (refer to the emDrive
manual for more details about protections and error states). At this point, the script should be
corrected for errors, downloaded to the emDrive, and then the device should be reset to clear the
error.

3.3.4 Debugging

There is no proper debugging mechanism in place; however, utilizing Lua 1/0O objects and general-
purpose CANopen objects, some form of limited debugging is possible. Using the input object, the
user can control the flow of the program. The user can also write debug information to the output
object. Additionally, all objects at index 0x3020, can be used freely for debugging purposes.

age noffpund or type unknown

3.3.5 Resource monitor

The resource monitor is used to measure characteristics of the script during compile-time,
initialization, and runtime (loop). All available objects relevant to resource monitoring are shown
under object 0x2031 and described in Table 53.

age noyfpund or type unknown

Table 54: Script resource monitor objects description
Name Description

EnableLoopMonitor Enable loop resource monitoring which includes
execution time and RAM usage.

Time_Loop_Immediate Immediate measured loop duration [us].
Time_Loop_Maximum Maximum measured loop duration [us].
This value might sometimes appear unreasonably large
that is when task running Lua script gets interrupted by

higher priority tasks.

Write 0 to clear value and prepare it for new

measurement.
Time_Initialization Time [ms] required to execute initialization routine.
Time_Compile Time [ms] required to load the script - that is time to

script initialization.

Memory_Free Immediately available RAM [byte].

Memory Used Immediately used RAM [byte].

Initialization and compile-time measurements are performed every time a new script is
downloaded and executed or when an existing script is restarted. Memory and loop time
monitoring must be explicitly enabled by setting EnableLoopMonitor to 1. This is because these
measurements are calculated every loop, thereby shortening the processing time allocated to the
script.

3.4 Using the emdrive Library

3.4.1 Option 1: Automatic Setup

1. Add Code to Script
e In firstscript.lua , add the following line:

require(‘emdrive')

2. Apply Path Modification
e A pop-up window will appear in the bottom right corner. Click "Apply and modify."
e After applying, delete the require('emdrive') line.
im@geoprbgnd or type unknown
3. Check .vscode Folder
e A new folder named .vscode will be created.
e Inside, there will be a settings.json file containing the path to the library.

3.4.2 Option 2: Manual Setup

1. Create .vscode Folder

e Manually create a .vscode folder in your workspace.
2. Create settings.json File

e Inside the .vscode folder, create a settings.json file.
3. Add Library Path to settings.json

e Add the following code to settings.json :

"lua.workspace.library": [

"D:/LualLibraries"

4. Examples

4.1 Example 1: "Hello World"

http://help.emsiso.com/uploads/images/gallery/2024-07/NgCimage.png

Description:
Print "Hello World" every 100ms to 10_Output.

To make the script work, you need to have two functions: Initialize and Loop .

1. Copy the Code
Copy the following code to an example.lua file:

function Initialize()[]
[JLoopPeriodMs = 100

end

function Loop()
10.Write("Hello World ")

end

2. Load the Script on the Inverter
e GO to 0x2040 0x05 - Script .
e Select "Write from file" and click "...".
e A pop-up window will appear. Locate the saved script and click "Open".
e Click "Write".

age noyfpund or type unknown

3. Check if the Script is Valid

e GO to 0x2040 0x02 - Status .

e The value "3" indicates the downloaded file is valid.
4. Run the Script

e Set 0x2040 0x03 - Control to 2.

e If the script is running, the status value should be "5".
5. View the Output

e GO to 0x2040 0x07 - 10_output .

e Click "Read" to see the "Hello World" string in the Description window.
age noyfpund or type unknown

4.2 Example 2: Data types & variables

4.2.1 Example 2.1: Data types

Lua is a lightweight, high-level programming language known for its simplicity and flexibility. It has
several basic data types, each serving a different purpose. Here are the main data types in Lua
along with examples for each:

1. Nil
Represents the absence of a value.
2. Boolean
Represents a boolean value, either true or false.
3. Number
Represents both integer and floating-point numbers.
4. String
Represents a sequence of characters.
5. Table
Represents associative arrays, which can be used as arrays, dictionaries, or other data
structures.
6. Function
Represents a callable function.

function Initialize()[]
JLoopPeriodMs = 100

end

function Loop()

-- 1. Nil
local myVariable = nil

10.Print(myVariable) -- Output: nil

-- 2. Boolean

local isTrue = true

local isFalse = false
10.Print(isTrue) -- Output: true

10.Print(isFalse) -- Output: false

-- 3. Number

local integerNumber = 42

local floatingNumber = 3.14
10.Print(integerNumber) -- Output: 42
10.Print(floatingNumber) -- Output: 3.14

-- 4. String

local myString = "Hello, Lua!"

10.Print(myString) -- Output: Hello, Lua!

-- 5. Table

local myTable = { keyl = "valuel", key2 = "value2" }
10.Print(myTable.keyl) -- Output: valuel
10.Print(myTable.key2) -- Output: value2

local arrayTable = { "apple", "banana", "cherry" }

10.Print(arrayTable[1]) -- Output: apple

-- 6. Function

local function myFunction(a, b)
returna + b

end

10.Print(myFunction(2, 3)) -- Output: 5

-- 6. Anonymous function

local anonFunction = function(x, y)
return x *y

end

10.Print(anonFunction(4, 5)) -- Output: 20

end

4.2.2 Example 2.2: Variables

1. Global variables
Global variables are accessible from anywhere in the program unless shadowed by a local
variable of the same name. By default, any variable declared without the local keyword is
global.

myGlobalVariable = 10 -- Global variable

function printGlobal()
print(myGlobalVariable)

end

printGlobal() -- Output: 10

2. Local Variables
Local variables are only accessible within the block or function where they are declared.

They help avoid polluting the global namespace and can be used to manage scope more
effectively.

local myLocalVariable = 20 -- Local variable

function printLocal()
local myLocalVariable = 30 -- Local to this function
print(myLocalVariable)

end

printLocal() -- Output: 30

print(myLocalVariable) -- Output: 20

3. Table fields
Variables can also be fields of tables, allowing for the creation of more complex data
structures like arrays, dictionaries, and objects.

local myTable = {
fieldl = "Hello",
field2 = "World"
}

print(myTable.fieldl) -- Output: Hello
print(myTable.field2) -- Output: World

Variable scope

e Global Scope: Variables declared outside of any function or block are global by default.
e Local Scope: Variables declared with the local keyword within a function, block, or loop
are local to that block.

1. Global vs. Local

myGlobal = "l am global"

function testScope()
local myLocal = "I am local"
print(myGlobal) -- Accessible
print(myLocal) -- Accessible

end

testScope()

print(myGlobal) -- Accessible

-- print(myLocal) -- Error: myLocal is not accessible here

2. Local Variable Shadowing

local x =5 -- Local variable in the main chunk

function shadowTest()
local x = 10 -- Local variable in the function
print(x) -- Output: 10

end

shadowTest()

print(x) -- Output: 5

Global variables and tables use a lot of memory, especially in embedded systems. To save
memory, it's best to use local variables whenever possible.

If you use a global variable at the start of your code and don't need it later, clear the global
variable to free up memory. You can do this by adding the following code:

myGlobalVariable = nil

4.3 Example 3: Inputs/Outputs

4.3.1 Example 3.1: Use of digital inputs & outputs

Turn low side 1 - ON when switch on digital pin 1 is switched ON.

function Initialize()[]
[(LoopPeriodMs = 10
end

function Loop()

local switch = Digital.Get(DIGITAL_IN_1)

if switch == 1 then
Digital.Set(LOW_SIDE_1, 1)
else
Digital.Set(LOW_SIDE_1, 0)
end

end

4.3.2 Example 3.2: Use of analog inputs

Print analog value of analog input 1 when switch on digital pin 1 is switched ON.

function Initialize()[]
JLoopPeriodMs = 10

end
function Loop()
local switch = Digital.Get(DIGITAL IN_1)

if switch == 1 then
local rawVal = Analog.Get(ANALOG_IN_1)
10.Print(rawVal)

end

end

4.4 Example 4: Blink LED

4.4.1 Example 4.1: Blink LED - "delay"

Loop period is set to 1000ms
LED is connected on low side 1.
Blink LED every 0.5s with Time.WaitMs().

function Initialize()[]
[LoopPeriodMs = 1000

end

function Loop()
local ledState = Digital.Get(LOW_SIDE_1)

if(ledState == 0) then
Digital.Set(LOW SIDE_1, 1)
else
Digital.Set(LOW _SIDE_1, 0)

end
Time.WaitMs(500)

end

If we set the LoopPeriodMs to 100ms, the script stops running and shows a status of "6", meaning
"Script timed out and was stopped."

Here are the key points to understand:

e Time.WaitMs() Function: This function pauses the script for a specified time. In our
example, it pauses for 0.5 seconds.

e LoopPeriodMs Setting: We set the script to loop every 100ms.

e Error Explanation: Since the script must loop every 100ms but pauses for 0.5 seconds, it
causes an error.

Important Note: Be very careful when using the Time.WaitMs() function to avoid such
errors.

4.4.2 Example 4.2: Blink LED - using loop time

We want the LED to blink every 0.5 seconds, while the main loop runs every 10ms. Here's how we
do it:

Count Loops: We count each loop from 1 to 50.

Multiply Counter: Multiply the counter by the loop period (10ms).
Check Reminder: Divide the result by 500.

Toggle Output: If the remainder is 0, we toggle the LED.

P whNH

Main_loop_period = 10

Counter=1

function Initialize()[]
[LoopPeriodMs = Main_loop_period

end
function Loop()
if ((Counter)*Main_loop_period)%500==0 then
local ledState = Digital.Get(LOW_SIDE_1)

if(ledState == 0) then
Digital.Set(LOW_SIDE_1, 1)
else
Digital.Set(LOW_SIDE_1, 0)

end
end

if Counter<50 then
Counter=Counter+1
else
Counter=1

end

end

4.4.3 Example 4.3: Blink LED - using processor time

The script initializes a start time variable and defines two functions. In the Loop function, the script
checks if the startTime is nil and if so, sets it to the current time in milliseconds.

The Loop function then continuously gets the current time in milliseconds. If 500 milliseconds have
passed since the StartTime , it resets the startTime to the current time.

It then gets the state of a digital output LOwW SIDE 1 .

If LOW_SIDE_1 is off (state is 0.0), it turns it on (state to 1.0).

If LOW_SIDE_1 is on (state is 1.0), it turns it off (state to 0.0).

This process repeats every 500 milliseconds, toggling the state of LOW SIDE_1 each time.

StartTime = nil

function Initialize()[]
[(LoopPeriodMs = 10

end
function Loop()

--Execute only once at the start of the loop
if(StartTime == nil) then
StartTime = Time.GetMs()

end

--Chechk every loop what is the time

local CurrentTime = Time.GetMs()

if (CurrentTime - StartTime >= 500) then

StartTime = CurrentTime
local ledState = Digital.Get(LOW_SIDE_1)

if(ledState == 0) then
Digital.Set(LOW _SIDE 1, 1)
else
Digital.Set(LOW_SIDE_1, 0)

end

end

end

4.5 Example 5: CAN send

4.5.1 Example 5.1: (CAN send simple message)

To send a CAN message every 100ms with an ID of 0x205 and data value 500 using the first 2
bytes, follow these steps:

il?ﬂa@geopftgnd or type unknown

1. Use Template:
e Start with example 4.3 as a template.
2. Add Variables and Functions:
e Define a CanID variable.
e Initialize CAN with the CAN.Initialize() function.
3. Sending Parameters:
e Use the CAN_TX ONLY parameter for sending.
e Messages will not be extended.
e Set filters to 0 since we are only sending.
4. Modify the Code:
e Delete the code for toggling the output.
5. Create Custom Function:
e Create a function that is called every 100ms.
e Name the argument Data_raw .
e Split Data_raw into 2 bytes.
e Send the data using the CAN.Send() function.

CanlD = 0x205

StartTime = nil

function Initialize()

CAN.Initialize(CAN_TX_ONLY,false,0,0)

[(LoopPeriodMs = 10

end
function Loop()
--Execute only once at the start of the loop
if(StartTime == nil) then
StartTime = Time.GetMs()

end

--Chechk every loop what is the time

local CurrentTime = Time.GetMs()

if (CurrentTime - StartTime >= 100) then

http://help.emsiso.com/uploads/images/gallery/2024-07/tnJimage.png

StartTime = CurrentTime
SendData(500)
end

end

function SendData(Data_raw)
local val = Data_raw
local byte0 = math.floor(val) & OxFF
local bytel = (math.floor(val) & OXFF00) >> 8
CAN.Send(CanID,{byte0,bytel,0,0,0,0,0,0})

end

In this example we only need 2 bytes, thus we don't need to send all 8 bytes out. You could do this
instead:

CAN.Send(CanlID,{byte0,bytel})

4.5.2 Example 5.2 : CAN send extended message (J1939)

We will do the same as in example 5.1 except we will send an extended message (It will be a J1939
message PH3 - the data order might be different in the standard).

ID = Ox18FF8203.

The only thing we need to change is 2 lines, we need to change the CanID and in the
CAN.Initialize() function, the boolean value to true. If we change only the CanID then the message
will still be sent out but the ID will be 0x199 (last 3 digits of - ID Ox18FF8199).

CanlD = Ox18FF8199
CAN.Initialize(CAN_TX_ONLY, true,0,0)

4.6 Example 6: CAN receive

4.6.1 Example 6.1 : CAN receive

In this example we will turn ON and OFF a LED that is connected on low side 1 with a received can
message.

The Can ID has to be 0x123 and we will send only one byte of data. If the value of data is 1 then
the LED will be turned ON, otherwise it will be turned OFF.

To use the CAN receive function we need to change the CAN.Initialite() and add a function called
"CAN.Received(message)". With the following code we always go into the CAN.Received() function
when a message is received and then we check if the ID is correct.

function Initialize()
CAN.Initialize(CAN_RX_TX,false,0,0)
JLoopPeriodMs = 10

end

function Loop()

end

function CAN.Received(message)
if (message.ID == 0x123) then
10.Print(" Datal: ", message.Data[1])
if(message.Data[1] == 1) then
Digital.Set(LOW_SIDE_1, 1)
else
Digital.Set(LOW_SIDE_1, 0)
end
end

end

We can also add a filter so we only go into the CAN.Received() when the message has a proper ID.
We achieve this with the following code.

function Initialize()
CAN.Initialize(CAN_RX TX,false,0x123,0x123)
[(LoopPeriodMs = 10

end

function Loop()

end

function CAN.Received(message)

--if (message.ID == 0x123) then

10.Print(" Datal: ", message.Data[1])
iflmessage.Data[1] == 1) then
Digital.Set(LOW_SIDE_1, 1)
else
Digital.Set(LOW_SIDE_1, 0)
end
--end

end

4.7 Example 7: Read & Set CANopen
objects

In this example, we'll use an analog input (HW AIN1) as a throttle to set the motor velocity
reference (object 0x3010 0x05). We will also read this object and print its value to the Lua output.
Additionally, we'll limit the maximum RPM using the math library to prevent the motor from
running away if there's a problem with the analog reading.

0V = ORPM
5V = 200RPM

For this example to work you need an inverter that is configured to work with the connected motor.
You need to be first able to spin it in velocity mode using the configurator.
When you start the script go to operational and turn on PWMs manually.

If the analog throttle is damaged (either a short circuit or a broken circuit), there is no safety
system in place. Here’s what can happen:

If the circuit is broken, no voltage will be applied, and the RPM will be 0.
If there is a short circuit, the inverter will receive the full 5V on the analog input, causing the
RPM to go to the maximum.

To prevent these issues, we need to add safety features. These will be demonstrated in
Example 8.

VelocityRef = {0x3010, 0x05}

function Initialize()
[LoopPeriodMs = 10

end

function Loop()

local rpom = Analog.Get(ANALOG_IN_1) * 40

rpm = math.min(rpm,200)
CANopen.SetObjectValue(VelocityRef, rpm)
local VelRef_from_CANopen = CANopen.GetObjectValue(VelocityRef)

10.Print(VelRef_from_CANopen)

end

4.8 Example 8: Demo application

4.8.1 Example 8.1 : Demo application using CANopen
objects.

In this example, we will demonstrate how to use the HW AIN1 input for a simple throttle control
with a potentiometer (0-5V).

e Throttle Input: HW AIN1 (0-5V Potentiometer)
o Minimum RPM: 0 (corresponds to 0.5V)
o Maximum RPM: 200 (corresponds to 4.5V)
o Motor Stop Conditions:
o If the throttle voltage is below 0.2V or above 4.8V, the motor will stop to
protect against short and break issues.
o PWM Enable Condition:
o If the throttle voltage is below 0.5V, the PWM signals will be enabled

function Initialize()

CANopen.SetObjectValue(VelocityRef, 0) -- Set Velocity ref to 0
[JCANopen.SetObjectValue(ControlMode, 1) -- Set velocity mode

[JCANopen.SetNMTState(CO_OPERATIONAL) -- Go into operational mode

[(LoopPeriodMs = 100

end

function Loop()
local throttleVoltage = Analog.Get(ANALOG_IN_1)
-- Decide whether to enable or disable the motor
if Digital.Get(DIGITAL IN_1) == 1 then
-- only enable if voltage on 0.2 < ANALOG_IN_1 < 0.5 V so the motor does not start ang goes to high RPM
if (0.2 < throttleVoltage and throttleVoltage < 0.5) then
CANopen.SetObjectValue(PwmControl, 1)
end
else
CANopen.SetObjectValue(PwmControl, 0)

end

if (throttleVoltage > 0.2 and throttleVoltage < 4.8) == true then
-- Map values 0.5 - 4.5V to 0 - 200 RPM and
local rpm = (throttleVoltage - 0.5) / 4 * 200

rom = math.min(rpm, 200)
rpm = math.max(rpm, 0)
CANopen.SetObjectValue(VelocityRef, rpm)
else
CANopen.SetObjectValue(VelocityRef, 0)
CANopen.SetObjectValue(PwmControl, 0)

end

end

4.8.2 Example 8.2 : Demo application using dedicated
motor library.

In this example we will have the same functionality of the code as in example 8.1. but with the use
of motor library
With the use of the motor library the code is easier to read and write than example 8.1.

function Initialize()

Motor.SetReferenceVelocity(0) -- Set Velocity ref to 0
[Motor.SetControlMode(VELOCITY_MODE) -- Set velocity mode
[JCANopen.SetNMTState(CO_OPERATIONAL) -- Go into operational mode

JLoopPeriodMs = 100

end

function Loop()
local throttleVoltage = Analog.Get(ANALOG_IN_1)
-- Decide whether to enable or disable the motor
if Digital.Get(DIGITAL IN_1) == 1 then
-- only enable if voltage on 0.2 < ANALOG_IN_1 < 0.5 V so the motor does not start ang goes to high RPM
if (0.2 < throttleVoltage and throttleVoltage < 0.5) then
Motor.Enable()
end
else
Motor.Disable()

end

if (throttleVoltage > 0.2 and throttleVoltage < 4.8) == true then
-- Map values 0.5-4.5V to 0 - 200 RPM and
local rpm = (throttleVoltage - 0.5) / 4 * 200
rom = math.min(rpm, 200)
rom = math.max(rpm, 0)
Motor.SetReferenceVelocity(rpm)
else
Motor.SetReferenceVelocity(0)
Motor.Disable()
end

end

4.9 Example 9: Throttle script (state -
machine)

Throttle Control

¢ Adjusting the Throttle: Use the potentiometer connected to Analog_IN_1.

e Protection: The potentiometer is protected against short and break circuits.
e Deadband: A deadband of 0.3V is set for the potentiometer.
e Speed Limits (needs to be set in objects described below):

o Minimum speed: 0 RPM

o Maximum speed: 300 RPM

Motor Operation

e Activation:
o The motor runs only when digital pin 1 (ON/OFF switch) is connected.
o Change motor direction using a switch on digital pin 3.
e Speed Setting:
o Forward max speed: Object 0x3020 0x0D
o Reverse max speed: Object 0x3020 OxOE
o Switching direction at max speed changes to the corresponding reverse speed.

LED Diagnostics

e LED Indicator (HS1):
o On: System working normally.
o Blinking: System in error mode.
e Error Blink Codes:
o Error 2: Blinks twice, then pauses.
o Error 3: Blinks three times, then pauses.

Voltage and RPM Details

e Working Voltage Range:
o Minimum RPM: at 0.5V
o Maximum RPM: at 4.5V
o Deadband: 0.3V
e Error Conditions:
o ERROR1: Voltage out of bounds
o ERROR2: Analog IN_1 < (Min_Volt - Deadband)
o ERROR3: Analog_IN_1 > (Max_Volt + Deadband)

CANopen Error Messages

e Error Message (0x80 + nodelD):
o Sent every 100ms in error state.
o Data length: 8 bytes.
o Byte 0 Mapping:
o Bit O: Throttle potentiometer error out of bounds
o Bit 1: Throttle potentiometer break circuit error
o Bit 2: Throttle potentiometer short circuit error
e Warning Message (0x180 + nodelD):

o Sent every 100ms in start state.
o Data length: 8 bytes.
o Byte 0: Warning code 0x01 (Motor disabled, potentiometer not in min position)

If the motor spins at Forward max speed and you switch the direction with the switch then it
will spin at Reverse max speed

-- Limits
MAX_RPM = 300
MIN_RPM = -300

-- Objects

FORWARD_MAX_SPEED_ID = {0x3020, OxD}
REVERSE_MAX_SPEED_ID = {0x3020, OXE}
LED_ID [(I11] = {0x30A4, 0x02}

-- Inputs

ENABLE_SW [J = DIGITAL_IN_1
DIRECTION_SW = DIGITAL IN_2
THROTTLE_IN = ANALOG IN_1
DIRECTION_IN = DIGITAL_IN_3

-- Voltage thresholds
THROTTLE_MIN_V = 0.5
THROTTLE_MAX_V = 4.5
DEADBAND []= 0.3

ERROR[] =0
ERROR_reg = 0
WARNINGS =0

StartTimel[]= nil
StartTime2[= nil
StartTime3 = nil

StartTime4 = nil

FlagCounter = 0

DIN] = {ON =1, OFF = 0}
LED [J = {OFF = 0x0, ON = Ox1}
DIRECTION = {FORWARD = 1, REVERSE = 0}

-- Application FSM
Application = {}

function Initialize()

[CAN.Initialize(CAN_TX_ONLY,false,0,0)

JApplication.NextState = "Idle"

Motor.SetReferenceVelocity(0)
[Motor.SetControlMode(VELOCITY_MODE)

[(LoopPeriodMs = 10

end

function Loop()
DApplication[Application.NextState]()

end

Application.ldle = function ()
[JCANopen.SetObjectValue(LED_ID, LED.ON)
[ICANopen.SetNMTState(CO_OPERATIONAL)
JApplication.NextState = "Start"

end

Application.Start = function ()

-- IF enable switch is off go to stop state

if (Digital.Get(ENABLE_SW) == DIN.OFF) then
[[Application.NextState = "Stop"
[(Mreturn

Jend

-- Get voltage

Hocal throttleVoltage = Analog.Get(THROTTLE_IN)

-- Go into error state if throttle voltage is out of bounds
if OutOfBounds(throttleVoltage, (THROTTLE_MIN_V - DEADBAND), (THROTTLE_MAX_V + DEADBAND)) == true
then
[IERROR = (ERROR or 0) | 1
[TApplication.NextState = "Error"
[Mreturn

[Jend

-- Check that voltage is bellow minimal throttle voltage - so that the motor does not start at high speed
[if Motor.GetState() == MOTOR_OFF then
[IJif throttleVoltage < (THROTTLE_MIN_V) then
Motor.Enable()
[ITIWARNINGS = WARNINGS & Negate_Xbit(1, 8)
return
Telse
[ITTWARNINGS = (WARNINGS or 0) | 1

end

[Jend

[}- Only set velocity reference when pwms are enabled
Of ((Motor.GetState() == MOTOR_RUN) and (throttleVoltage >= 0.5)) then
[I}- Calculate Voltage
[F-local rom = ((throttleVoltage - THROTTLE_MIN_V) * MAX_RPM) / (THROTTLE_MAX_V - THROTTLE_MIN_V)
[Mlocal rpm = ((throttleVoltage - THROTTLE_MIN_V) * GetMaxSpeed()) / (THROTTLE_MAX_V - THROTTLE_MIN_V)
[}- Limit RPM
Orpm = math.min(rpm, MAX_RPM)
Orpm = math.max(rpm, MIN_RPM)
[MIO.Print("REF: ", rpm)
[}- Set ref

[[Motor.SetReferenceVelocity(rpm)
Jend

[}- Send warnings every 100ms

(local CurrentTime = Time.GetMs()

Hif((StartTIme2 == nil) or (CurrentTime-StartTIme2) >= 100) then
[[ISendWarnings()

Jend

end

Application.Stop = function ()

Motor.SetReferenceVelocity(0)
[Motor.Disable()

--When eneble sw is activated go to start state
[if (Digital.Get(ENABLE_SW) == DIN.ON) then
[[Application.NextState = "Start"

[Jend

end

Application.Error = function ()

Motor.Disable()

[Motor.SetReferenceVelocity(0)

[}-local ledValue = CANopen.GetObjectValue(LED_ID)
local throttleVoltage = Analog.Get(THROTTLE_IN)
[local ErrorBlinkCounter = 0

Hocal CurrentTime

[}-If bit 0 = 1 then OutOfBounds is detected

0if (ERROR & 1) == 1 then

[1Jif throttleVoltage < (THROTTLE_MIN_V - DEADBAND) then
[JTJERROR = ERROR | 2

[ITIERROR_reg = ERROR _reg | 1 -- set the generic error register
[Tlelseif throttleVoltage > (THROTTLE_MAX V + DEADBAND) then
[(ITERROR = ERROR | 4

[HTIERROR_reg = ERROR_reg | 1 -- set the generic error register

Telse
[I1+- Clear ERROR bit 0, 1, 2

[[IERROR = ERROR & Negate_ Xbit(7, 16)

[ILT}- Clear the generic error register
[(ITIERROR_reg = ERROR_reg | Negate_Xbit(1, 8)
Tend

Jend

[}- Send Errors every 100ms

[JCurrentTime = Time.GetMs()

[if ((StartTimel == nil) or (CurrentTime - StartTimel) >= 100) then
[[StartTimel = CurrentTime

[T1ISendError()

[Jend

[}- Determine how many times we want to blink the led
if (ERROR & 2) >> 1) == 1 then
ErrorBlinkCounter = 2
elseif ((ERROR & 4) >> 2) == 1 then
ErrorBlinkCounter = 3

end

-- Start the blinking cycle if enough time has passed
[CurrentTime = Time.GetMs()
if StartTime3 == nil or (CurrentTime - StartTime3) >= 3000 then
StartTime3 = CurrentTime
FlagCounter = 0

end

-- Handle the blinking logic
if FlagCounter < 2 * ErrorBlinkCounter then
if StartTime4 == nil or (CurrentTime - StartTime4) >= 300 then
StartTime4 = CurrentTime

FlagCounter = FlagCounter + 1

-- Toggle LED
--if ledValue == 0 then
if FlagCounter % 2 == 1 then
[IITICANopen.SetObjectValue(LED_ID, LED.ON)
else
CANopen.SetObjectValue(LED_ID, LED.OFF)

end

end

(else

[I}- Ensure the LED is off during the pause period
CANopen.SetObjectValue(LED_ID, LED.OFF)

end

if ERROR == 0 then
[[FlagCounter = 0
[[Application.NextState = "Idle"
[Mreturn
[Jend

end

function GetMaxSpeed()

[if Digital.Get(DIRECTION_IN) == DIRECTION.FORWARD then
[Mreturn CANopen.GetObjectValue(FORWARD_MAX_SPEED_ID)
[Jend

Oreturn CANopen.GetObjectValue(REVERSE_MAX_SPEED_ID)

end

function SendError()

[}- Send on ID + nodelD; we get the Nodeld from CANopen off the inverter
(local CanID = 0x80 + CANopen.GetObjectValue({0x100B, 0x00})

[ocal byte0 = ERROR & OxFF

(ocal bytel = (ERROR & OxFF00) >> 8

[ocal byte2 = ERROR_reg & OxFF

OCAN.Send(CanlID,{byte0, bytel, byte2, 0, 0, 0, 0, 0})

end

function SendWarnings()

[}- Send on PDO + nodelD;

Hocal CanID = 0x180 + CANopen.GetObjectValue({0x100B, 0x00})
(local byte0 = WARNINGS & OxFF

[ICAN.Send(CanID,{byte0, 0, 0, 0, 0, 0, 0, 0})

end

function OutOfBounds(throttleVoltage, minVal, maxVal)

if (throttleVoltage < minVal) or (throttleVoltage > maxVal) then
return true

else
return false

end

end

--- Fuctino to negate bits
---@param value number Value to negate
---@param xBit number Number of bites e.g 16bit => xBit = 16
function Negate_Xbit(value, xBit)
local negated = 0
fori =0, (xBit-1) do
if (value & (1 << i)) == 0 then
negated = negated + (1 << i)
end
end
return negated

end

4.10 Example 10: Read protections of
motor control in Lua

Purpose:

This script is designed to monitor and report various hardware errors in motor control systems,
using Lua to check status registers for issues such as overtemperature, voltage discrepancies, and
communication failures.

Description:

e Protection_bits Table: Lists each error with a unique bitmask for identification.

e Initialize Function: Sets initial conditions, including the loop frequency.

e Loop Function: Repeatedly retrieves the current error status, checks each potential error
against the current status, and prints messages for any active errors.

Usage:
It is best to use only the protections that you need to check or send. By doing this, you can make

the Protection_bits table smaller, which in turn reduces memory usage—a crucial consideration in
environments with limited resources. Either way, if the value returned from the function is greater
than 0, an error has occurred.

local Errors = {}

local Protection_bits = {
{0x1, "sw_phase_error"},
{0x2, "sw_DC_link_overvoltage_error"},
{0x4, "sw_DC_link_undervoltage_error"},
{0x8, "bridge_overtemperature_error"},
{0x10, "capacitor_overtemperature_error"},
{0x20, "motor_overtemperature_error"},
{0x40, "current_offset_error"},
{0x80, "CAN_command_timeout_error"},
{0x100, "system_self _test failed_error"},
{0x800, "motor_feedback_error"},
{0x8000, "CAN_communication_error"},
{0x10000, "logic_supply_monitor_error"},
{0x20000, "dc_link_overvoltage_comparator_error"},
{0x80000, "gatedriver_error"},
{0x100000, "HV_interlock"},
{0x200000, "motor_temperature_sensor_fail"},
{0x400000, "capacitor_temperature_sensor _fail"},
{0x800000, "bridge_temperature_sensor_fail"},
{0x1000000, "bridge_fault"},
{0x2000000, "logic_supply_fault"},
{0x4000000, "bus_bar_fault"},
{0x8000000, "system _initialization_error"},
{0x10000000, "fault_Vrefs_chip"},
{0x20000000, "application_error_state"},
{0x40000000, "motor_control_error"}
--{0x80000000, "error_extended"}

-- Initialize
function Initialize()
LoopPeriodMs = 10

end

function Loop()

local protections = Motor.GetProtectionsLow()

for i =1, #Protection_bits do
local bitmask = Protection_bits[i][1]
local varname = Protection_bits[i][2]
Errors[i] = {bitmask = bitmask, name = varname, state = (protections & bitmask) == bitmask}

end

-- Example usage to print all active errors
fori =1, #Errors do
if Errors[i].state then
[O.Print("Error detected: " .. Errors[il.name)
end
end

end

5. Benchmark

5.1 Examples for benchmark:

5.1.1 00 Empty script

function Initialize()
JLoopPeriodMs = 10

end

function Loop()

end

5.1.2 01_GetObject

function Initialize()
JLoopPeriodMs = 10

end

function Loop()

(fori = 1,100 do
[TICANopen.GetObjectValue({0x30B0, 0x04})
Jend

end

5.1.3 02_GetObject_with_library

function Initialize()
[(LoopPeriodMs = 10

end

function Loop()

Ofor i = 1,100 do
MDigital.Get(DIGITAL IN_4)
Jend

end

5.1.4 03_GetSet

function Initialize()
JLoopPeriodMs = 10

end

function Loop()

[fori = 1,50 do

[Mlocal throttle = CANopen.GetObjectValue({0x3090, 0x01})
[TICANopen.SetObjectValue({0x3010, 0x05}, throttle * 40) --at 4.5V = 180RPM
[Jend

end

5.1.5 04_GetSet with_library

function Initialize()
[(LoopPeriodMs = 10

end

function Loop()
[fori = 1,50 do
[Mlocal throttle = Analog.Get(ANALOG_IN_1)

[[Motor.SetReferenceVelocity(throttle * 40) --at 4.5V = 180RPM
Jend

end

5.2 Results

We loaded each script onto the inverter and started the "Resource Manager." We ran the script for
a specific period and logged the variables to a live chart, from which we then created the following
table:

Examples from 05 onwards can be found under the title 4. Examples.

Table 55: Script benchmark tests

Name of RAM usage RAM free RAM used Avg. loop Compile time Initialization
script [kB] [kB] [%] duration [us] [ms] time [ms]
00_Empty_scri 11.800 24.040 33 13 2.7 0.175
pt

01_GetObject 11.728 24.112 33 5000 2.9 0.173
02_GetObject_ 11.784 24.056 33 510 2.94 0.241
with_library

03_GetSet 12.088 23.752 34 5000 3.178 0.177
04 _GetSet_wit 12.128 23.712 34 450 3.149 0.174
h_library

05_Timer_exa 12.064 23.776 34 500407 3.294 0.242
mple_4 1

06_Timer_exa 12.200 23.640 34 17 3.669 0.177
mple_4_2

07 _Timer_exa 12.232 23.608 34 19 3.747 0.175
mple_4 3

08 _Example_5 12.104 23.736 34 18 4.332 0.213
09 _Example_6 15.512 20.328 43 9 3.468 0.225
10_Example_7 22.048 12.792 63 125 3.506 0.191
11 Example_8 13.472 22.368 38 110 5.030 0.293

1

Name ofscript RAM usage RAM free RAM used Avg. loop Compile time Initialization

[kB] [kB] [%] duration [us] [ms] time [ms]
12_Example 8 13.072 22.768 36 50 4.628 0.250
2
13_Example_9 21.112 14.728 59 250 15.756 0.742
Rama waeelh%dr type unknown
Mersagerdoepotime [uslown

Examples 01, 03, and 05 have too much loop time and were excluded from the chart.

As you can see from the table and charts, reading and writing values directly from the CANopen
stack takes longer than using our library. For example, the 01 _GetObject example has an average
loop time execution of 5ms, whereas the 02_GetObject with_library example has an average time
of 510us, which is approximately 10 times faster. Based on these results, it is better to use
functions that directly interact with the inverter instead of the CANopen stack, where possible.

We can also see that the delay function used in example 05_Timer_example_4_1 has a very long
loop time because we used the delay to blink an LED. This function must be used with caution and
only for small delays if you have no other option.

For writing applications, we recommend using a state machine, which is more reliable. With a state
machine, you have more control over what happens in each state and can properly define the
transitions between states.

In section "5.3 Live chart data for each example", we can see the loop time, RAM used and RAM
free for a specific time period. We can se that we have some spikes in loop time, which can
indicate that some specific part of the code was executed or that the script was interrupted with a
higher priority task. We can also see that the RAM usage can very based on which part of the code
is executed.

5.3 Global variables benchmark

In this section, we will demonstrate how the number of global variables affects script RAM usage
and loop execution time.

Below is the code that will be used to test 10 global variables. We will increase the number of
global variables to 20, 30, 100, and 150, but the principle will remain the same

Globall =1
Global2z =1
Global3 =1
Global4d =1
Global5 =1
Global6 = 1
Global7 =1
Global8 =1
Global9 =1
Globall0 =1

function Initialize()
[(LoopPeriodMs = 10

end

function Loop()
10.Print(Globall)
10.Print(Global2)
10.Print(Global3)
10.Print(Global4)
10.Print(Global5)
10.Print(Global6)
10.Print(Global7)
10.Print(Global8)
10.Print(Global9)
10.Print(Global10)

end

In the table below, we recorded the data for different sets of global variables. We can observe that
as the number of global variables increases, the compile time, initialization time, loop execution
time, and RAM usage all increase. It is important to remember that we are limited by the loop
execution time set in the initialize() function. If we exceed that time, we encounter an error.

More importantly, we need to carefully manage the number of global variables because excessive
use can lead to memory overflow. As shown in the table below, having 150 global variables
consumes around 75% of the RAM, but our code has almost no functionality. If we add the following
code right after the Loop() function:

fori=1,50do
[Tlocal throttle = CANopen.GetObjectValue({0x3090, 0x01})
[TICANopen.SetObjectValue({0x3010, 0x05}, throttle * 40) --at 4.5V = 180RPM

end

We see that the RAM usage jumps to 98%. This shows that RAM usage depends not only on the
number of global variables but also on the quality of the code itself. Therefore, we need to write
efficient code, which means avoiding the use of global variables, using local variables, and
implementing proper algorithms.

For these reasons, it is difficult to specify the maximum number of global and local variables.
We recommend testing your script continuously during development.

Table 56: How the number of globals affect the execution of a script

Number of RAM usage RAM free RAM used Avg. loop Compile time Initialization
globals [kB] [kB] [%] duration [us] [ms] time [ms]

10 globals 12.656 23.184 35 200 3.874 0.257

20 globals 14.480 21.360 40 380 4.942 0.412

30 globals 14.688 21.152 41 650 6.018 0.591

100 globals 25.408 10.432 71 2000 13.5 0.795

150 globals 26.976 8.864 75 3110 18.4 1.276

150 globals + 35.072 768 98 8000 18.9 1.213

4 lines of code

6. Best practices

For further insights and practical tips, | recommend exploring "Programming in Lua," available at:

Programming in Lua. Authored by experts in the field, this comprehensive resource offers
invaluable guidance for Lua developers. It's worth noting that the entire topic is accessible free of
charge as of April 24, 2024. Additionally, some sections of the topic include examples to further
illustrate key concepts and techniques.

https://www.lua.org/gems/

6.1 Minimizing Global Variables

The most common problem with Lua scripting occurs when the script becomes "big" and the
programmer uses only or to much global, resulting in an "out of memory" error. In Lua scripting, it's
imperative to exercise caution with global variables to prevent memory exhaustion and script
failures, especially on embedded systems. Emphasizing the utilization of local variables whenever
possible is paramount. By minimizing global variable usage, we mitigate the risk of memory
overflow and enhance script performance.

7. Known issues and limitations

This section describes known issues and limitations, their causes, and solutions or mitigations if
they exist.

/.1 Issues

7.1.1 Lua is not enabled

Error 0x06070010 when loading a script may indicate Lua object 0x2040 0x01 isn't setto 1. To
resolve, ensure proper access level in Configurator to unlock this feature. If you do not have the
proper access level contact us.

im@geoprbgnd or type unknown

imagadpn@nd or type unknown

7.1.2 Output object out of memory error

When reading an output object whose value is periodically changing by the script, it is possible that
an "Out of memory" error, as shown in Figure 8, may be reported by the emDrive Configurator.

age noffpund or type unknown

http://help.emsiso.com/uploads/images/gallery/2024-04/YPqimage.png
http://help.emsiso.com/uploads/images/gallery/2024-04/jl3image.png

Cause: unsynchronized reading and writing to output object by script and emDrive Configurator at
the same time.

Solution: read output object again.

7.1.3 10.Print() isn't functioning

If 10.Print() isn't functioning, it may signal an outdated firmware version. FW 1.12.2 - lacks support,
while FW 1.13.2 onwards enables the function.

7.1.4 Protections

If multiple protections are active, the CANopen read wont work for the protection object. (New FW
will fix this issue)

Revision #50
Created 5 April 2024 12:22:58 by Matic Jehart
Updated 19 November 2024 13:41:30 by Matic Jehart

